基于薄导电层自清除的强可靠静电驱动。

IF 6.4 2区 计算机科学 Q1 ROBOTICS
Soft Robotics Pub Date : 2023-08-01 Epub Date: 2023-02-28 DOI:10.1089/soro.2022.0132
Guoyong Xie, Dongliang Fan, Huacen Wang, Renjie Zhu, Jianjun Mao, Hongqiang Wang
{"title":"基于薄导电层自清除的强可靠静电驱动。","authors":"Guoyong Xie,&nbsp;Dongliang Fan,&nbsp;Huacen Wang,&nbsp;Renjie Zhu,&nbsp;Jianjun Mao,&nbsp;Hongqiang Wang","doi":"10.1089/soro.2022.0132","DOIUrl":null,"url":null,"abstract":"<p><p>Electrostatic adhesion, as a promising actuation technique for soft robotics, severely suffers from the failure caused by the unpredictable electrical breakdown. This study proposes a novel self-clearing mechanism for electrostatic actuators, particularly for electrostatic adhesion. By simply employing an enough thin conductive layer (e.g., <7 μm for copper), this method can spontaneously clear the conductor around the breakdown sites effectively once breakdowns onset and survive the actuator shortly after the electrical damage. Compared with previous self-clearing methods, which typically rely on new specific materials, this mechanism is easy to operate and compatible with various materials and fabrication processes. In our tests, it can improve the maximum available voltage by 260% and the maximum electrostatic adhesive force by 276%. In addition, the robustness and repeatability of the self-clearing mechanism are validated by surviving consecutive breakdowns and self-clearing of 173 times during 65 min. This method is also demonstrated to be capable of recovering the electrostatic pad from severe physical damages such as punctures, penetrations, and cuttings successfully and enabling stable and reliable operation of the electrostatic clutch, or gripping, for example, even after the short-circuit takes place for hundreds of times. Therefore, the proposed self-clearing method sheds new light on high performance and more extensive practical applications of electrostatic actuators in the future.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"10 4","pages":"797-807"},"PeriodicalIF":6.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strong Reliable Electrostatic Actuation Based on Self-Clearing Using a Thin Conductive Layer.\",\"authors\":\"Guoyong Xie,&nbsp;Dongliang Fan,&nbsp;Huacen Wang,&nbsp;Renjie Zhu,&nbsp;Jianjun Mao,&nbsp;Hongqiang Wang\",\"doi\":\"10.1089/soro.2022.0132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrostatic adhesion, as a promising actuation technique for soft robotics, severely suffers from the failure caused by the unpredictable electrical breakdown. This study proposes a novel self-clearing mechanism for electrostatic actuators, particularly for electrostatic adhesion. By simply employing an enough thin conductive layer (e.g., <7 μm for copper), this method can spontaneously clear the conductor around the breakdown sites effectively once breakdowns onset and survive the actuator shortly after the electrical damage. Compared with previous self-clearing methods, which typically rely on new specific materials, this mechanism is easy to operate and compatible with various materials and fabrication processes. In our tests, it can improve the maximum available voltage by 260% and the maximum electrostatic adhesive force by 276%. In addition, the robustness and repeatability of the self-clearing mechanism are validated by surviving consecutive breakdowns and self-clearing of 173 times during 65 min. This method is also demonstrated to be capable of recovering the electrostatic pad from severe physical damages such as punctures, penetrations, and cuttings successfully and enabling stable and reliable operation of the electrostatic clutch, or gripping, for example, even after the short-circuit takes place for hundreds of times. Therefore, the proposed self-clearing method sheds new light on high performance and more extensive practical applications of electrostatic actuators in the future.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\"10 4\",\"pages\":\"797-807\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2022.0132\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0132","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 1

摘要

静电粘附作为一种很有前途的软机器人驱动技术,由于不可预测的电击穿而导致的故障严重。本研究提出了一种新型的静电执行器自清除机制,特别是静电粘附。通过简单地采用足够薄的导电层(例如。,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Reliable Electrostatic Actuation Based on Self-Clearing Using a Thin Conductive Layer.

Electrostatic adhesion, as a promising actuation technique for soft robotics, severely suffers from the failure caused by the unpredictable electrical breakdown. This study proposes a novel self-clearing mechanism for electrostatic actuators, particularly for electrostatic adhesion. By simply employing an enough thin conductive layer (e.g., <7 μm for copper), this method can spontaneously clear the conductor around the breakdown sites effectively once breakdowns onset and survive the actuator shortly after the electrical damage. Compared with previous self-clearing methods, which typically rely on new specific materials, this mechanism is easy to operate and compatible with various materials and fabrication processes. In our tests, it can improve the maximum available voltage by 260% and the maximum electrostatic adhesive force by 276%. In addition, the robustness and repeatability of the self-clearing mechanism are validated by surviving consecutive breakdowns and self-clearing of 173 times during 65 min. This method is also demonstrated to be capable of recovering the electrostatic pad from severe physical damages such as punctures, penetrations, and cuttings successfully and enabling stable and reliable operation of the electrostatic clutch, or gripping, for example, even after the short-circuit takes place for hundreds of times. Therefore, the proposed self-clearing method sheds new light on high performance and more extensive practical applications of electrostatic actuators in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信