开发贝叶斯多模态模型,用于检测神经影像学研究中的生物标志物。

Dulal K Bhaumik, Yue Wang, Pei-Shan Yen, Olusola A Ajilore
{"title":"开发贝叶斯多模态模型,用于检测神经影像学研究中的生物标志物。","authors":"Dulal K Bhaumik,&nbsp;Yue Wang,&nbsp;Pei-Shan Yen,&nbsp;Olusola A Ajilore","doi":"10.3389/fnimg.2023.1147508","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we developed a Bayesian multimodal model to detect biomarkers (or neuromarkers) using resting-state functional and structural data while comparing a late-life depression group with a healthy control group. Biomarker detection helps determine a target for treatment intervention to get the optimal therapeutic benefit for treatment-resistant patients. The borrowing strength of the structural connectivity has been quantified for functional activity while detecting the biomarker. In the biomarker searching process, thousands of hypotheses are generated and tested simultaneously using our novel method to control the false discovery rate for small samples. Several existing statistical approaches, frequently used in analyzing neuroimaging data have been investigated and compared via simulation with the proposed approach to show its excellent performance. Results are illustrated with a live data set generated in a late-life depression study. The role of detected biomarkers in terms of cognitive function has been explored.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"2 ","pages":"1147508"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406277/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a Bayesian multimodal model to detect biomarkers in neuroimaging studies.\",\"authors\":\"Dulal K Bhaumik,&nbsp;Yue Wang,&nbsp;Pei-Shan Yen,&nbsp;Olusola A Ajilore\",\"doi\":\"10.3389/fnimg.2023.1147508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we developed a Bayesian multimodal model to detect biomarkers (or neuromarkers) using resting-state functional and structural data while comparing a late-life depression group with a healthy control group. Biomarker detection helps determine a target for treatment intervention to get the optimal therapeutic benefit for treatment-resistant patients. The borrowing strength of the structural connectivity has been quantified for functional activity while detecting the biomarker. In the biomarker searching process, thousands of hypotheses are generated and tested simultaneously using our novel method to control the false discovery rate for small samples. Several existing statistical approaches, frequently used in analyzing neuroimaging data have been investigated and compared via simulation with the proposed approach to show its excellent performance. Results are illustrated with a live data set generated in a late-life depression study. The role of detected biomarkers in terms of cognitive function has been explored.</p>\",\"PeriodicalId\":73094,\"journal\":{\"name\":\"Frontiers in neuroimaging\",\"volume\":\"2 \",\"pages\":\"1147508\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406277/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnimg.2023.1147508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2023.1147508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们开发了一个贝叶斯多模态模型,利用静息状态功能和结构数据来检测生物标志物(或神经标志物),同时将晚年抑郁症组与健康对照组进行比较。生物标志物检测有助于确定治疗干预的目标,以获得治疗耐药患者的最佳治疗效果。在检测生物标志物时,结构连通性的借用强度已被量化为功能活性。在生物标记物搜索过程中,使用我们的新方法同时生成和测试数千个假设,以控制小样本的错误发现率。研究了现有的几种常用的神经影像学数据分析统计方法,并与本文提出的方法进行了仿真比较,以显示其优异的性能。结果用一个在晚年抑郁症研究中产生的实时数据集来说明。检测到的生物标志物在认知功能方面的作用已经被探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of a Bayesian multimodal model to detect biomarkers in neuroimaging studies.

Development of a Bayesian multimodal model to detect biomarkers in neuroimaging studies.

Development of a Bayesian multimodal model to detect biomarkers in neuroimaging studies.

Development of a Bayesian multimodal model to detect biomarkers in neuroimaging studies.

In this article, we developed a Bayesian multimodal model to detect biomarkers (or neuromarkers) using resting-state functional and structural data while comparing a late-life depression group with a healthy control group. Biomarker detection helps determine a target for treatment intervention to get the optimal therapeutic benefit for treatment-resistant patients. The borrowing strength of the structural connectivity has been quantified for functional activity while detecting the biomarker. In the biomarker searching process, thousands of hypotheses are generated and tested simultaneously using our novel method to control the false discovery rate for small samples. Several existing statistical approaches, frequently used in analyzing neuroimaging data have been investigated and compared via simulation with the proposed approach to show its excellent performance. Results are illustrated with a live data set generated in a late-life depression study. The role of detected biomarkers in terms of cognitive function has been explored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信