Sebastian J Schreiber, Alexandru Hening, Dang H Nguyen
{"title":"随机环境下斑块选择的协同进化。","authors":"Sebastian J Schreiber, Alexandru Hening, Dang H Nguyen","doi":"10.1086/725079","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractSpecies interact in landscapes where environmental conditions vary in time and space. This variability impacts how species select habitat patches. Under equilibrium conditions, evolution of this patch selection can result in ideal free distributions where per capita growth rates are zero in occupied patches and negative in unoccupied patches. These ideal free distributions, however, do not explain why species occupy sink patches, why competitors have overlapping spatial ranges, or why predators avoid highly productive patches. To understand these patterns, we solve for coevolutionarily stable strategies (coESSs) of patch selection for multispecies stochastic Lotka-Volterra models accounting for spatial and temporal heterogeneity. In occupied patches at the coESS, we show that the differences between the local contributions to the mean and the variance of the long-term population growth rate are equalized. Applying this characterization to models of antagonistic interactions reveals that environmental stochasticity can partially exorcize the ghost of competition past, select for new forms of enemy-free and victimless space, and generate hydra effects over evolutionary timescales. Viewing our results through the economic lens of modern portfolio theory highlights why the coESS for patch selection is often a bet-hedging strategy coupling stochastic sink populations. Our results highlight how environmental stochasticity can reverse or amplify evolutionary outcomes as a result of species interactions or spatial heterogeneity.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"202 2","pages":"122-139"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coevolution of Patch Selection in Stochastic Environments.\",\"authors\":\"Sebastian J Schreiber, Alexandru Hening, Dang H Nguyen\",\"doi\":\"10.1086/725079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractSpecies interact in landscapes where environmental conditions vary in time and space. This variability impacts how species select habitat patches. Under equilibrium conditions, evolution of this patch selection can result in ideal free distributions where per capita growth rates are zero in occupied patches and negative in unoccupied patches. These ideal free distributions, however, do not explain why species occupy sink patches, why competitors have overlapping spatial ranges, or why predators avoid highly productive patches. To understand these patterns, we solve for coevolutionarily stable strategies (coESSs) of patch selection for multispecies stochastic Lotka-Volterra models accounting for spatial and temporal heterogeneity. In occupied patches at the coESS, we show that the differences between the local contributions to the mean and the variance of the long-term population growth rate are equalized. Applying this characterization to models of antagonistic interactions reveals that environmental stochasticity can partially exorcize the ghost of competition past, select for new forms of enemy-free and victimless space, and generate hydra effects over evolutionary timescales. Viewing our results through the economic lens of modern portfolio theory highlights why the coESS for patch selection is often a bet-hedging strategy coupling stochastic sink populations. Our results highlight how environmental stochasticity can reverse or amplify evolutionary outcomes as a result of species interactions or spatial heterogeneity.</p>\",\"PeriodicalId\":50800,\"journal\":{\"name\":\"American Naturalist\",\"volume\":\"202 2\",\"pages\":\"122-139\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Naturalist\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1086/725079\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/725079","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Coevolution of Patch Selection in Stochastic Environments.
AbstractSpecies interact in landscapes where environmental conditions vary in time and space. This variability impacts how species select habitat patches. Under equilibrium conditions, evolution of this patch selection can result in ideal free distributions where per capita growth rates are zero in occupied patches and negative in unoccupied patches. These ideal free distributions, however, do not explain why species occupy sink patches, why competitors have overlapping spatial ranges, or why predators avoid highly productive patches. To understand these patterns, we solve for coevolutionarily stable strategies (coESSs) of patch selection for multispecies stochastic Lotka-Volterra models accounting for spatial and temporal heterogeneity. In occupied patches at the coESS, we show that the differences between the local contributions to the mean and the variance of the long-term population growth rate are equalized. Applying this characterization to models of antagonistic interactions reveals that environmental stochasticity can partially exorcize the ghost of competition past, select for new forms of enemy-free and victimless space, and generate hydra effects over evolutionary timescales. Viewing our results through the economic lens of modern portfolio theory highlights why the coESS for patch selection is often a bet-hedging strategy coupling stochastic sink populations. Our results highlight how environmental stochasticity can reverse or amplify evolutionary outcomes as a result of species interactions or spatial heterogeneity.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.