{"title":"动力学研究揭示的活性Cu2+-肽中间体通过匹配铜金属组学的时间窗获得相关性。","authors":"Radosław Kotuniak, Wojciech Bal","doi":"10.1093/mtomcs/mfad007","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this essay is to propose that metallomic studies in the area of extracellular copper transport are incomplete without the explicit consideration of kinetics of Cu2+ion binding and exchange reactions. The kinetic data should be interpreted in the context of time constraints imposed by specific physiological processes. Examples from experimental studies of Cu2+ ion interactions with amino-terminal copper and nickel binding site/N-terminal site motifs are used to demonstrate that duration and periodicity of such processes as bloodstream transport or neurotransmission promote the reaction intermediates to the role of physiological effectors. The unexpectedly long lifetimes of intermediate complexes lead to their accumulation and novel reactivities. The emerging ideas are discussed in the context of other research areas in metallomics.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":"15 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382716/pdf/","citationCount":"1","resultStr":"{\"title\":\"Reactive Cu2+-peptide intermediates revealed by kinetic studies gain relevance by matching time windows in copper metallomics.\",\"authors\":\"Radosław Kotuniak, Wojciech Bal\",\"doi\":\"10.1093/mtomcs/mfad007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this essay is to propose that metallomic studies in the area of extracellular copper transport are incomplete without the explicit consideration of kinetics of Cu2+ion binding and exchange reactions. The kinetic data should be interpreted in the context of time constraints imposed by specific physiological processes. Examples from experimental studies of Cu2+ ion interactions with amino-terminal copper and nickel binding site/N-terminal site motifs are used to demonstrate that duration and periodicity of such processes as bloodstream transport or neurotransmission promote the reaction intermediates to the role of physiological effectors. The unexpectedly long lifetimes of intermediate complexes lead to their accumulation and novel reactivities. The emerging ideas are discussed in the context of other research areas in metallomics.</p>\",\"PeriodicalId\":89,\"journal\":{\"name\":\"Metallomics\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382716/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/mtomcs/mfad007\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfad007","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Reactive Cu2+-peptide intermediates revealed by kinetic studies gain relevance by matching time windows in copper metallomics.
The purpose of this essay is to propose that metallomic studies in the area of extracellular copper transport are incomplete without the explicit consideration of kinetics of Cu2+ion binding and exchange reactions. The kinetic data should be interpreted in the context of time constraints imposed by specific physiological processes. Examples from experimental studies of Cu2+ ion interactions with amino-terminal copper and nickel binding site/N-terminal site motifs are used to demonstrate that duration and periodicity of such processes as bloodstream transport or neurotransmission promote the reaction intermediates to the role of physiological effectors. The unexpectedly long lifetimes of intermediate complexes lead to their accumulation and novel reactivities. The emerging ideas are discussed in the context of other research areas in metallomics.