{"title":"预测病毒的人畜共患潜力:我们在哪里?","authors":"Nardus Mollentze , Daniel G Streicker","doi":"10.1016/j.coviro.2023.101346","DOIUrl":null,"url":null,"abstract":"<div><p>The prospect of identifying high-risk viruses and designing interventions to pre-empt their emergence into human populations is enticing, but controversial, particularly when used to justify large-scale virus discovery initiatives. We review the current state of these efforts, identifying three broad classes of predictive models that have differences in data inputs that define their potential utility for triaging newly discovered viruses for further investigation. Prospects for model predictions of public health risk to guide preparedness depend not only on computational improvements to algorithms, but also on more efficient data generation in laboratory, field and clinical settings. Beyond public health applications, efforts to predict zoonoses provide unique research value by creating generalisable understanding of the ecological and evolutionary factors that promote viral emergence.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"61 ","pages":"Article 101346"},"PeriodicalIF":5.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting zoonotic potential of viruses: where are we?\",\"authors\":\"Nardus Mollentze , Daniel G Streicker\",\"doi\":\"10.1016/j.coviro.2023.101346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The prospect of identifying high-risk viruses and designing interventions to pre-empt their emergence into human populations is enticing, but controversial, particularly when used to justify large-scale virus discovery initiatives. We review the current state of these efforts, identifying three broad classes of predictive models that have differences in data inputs that define their potential utility for triaging newly discovered viruses for further investigation. Prospects for model predictions of public health risk to guide preparedness depend not only on computational improvements to algorithms, but also on more efficient data generation in laboratory, field and clinical settings. Beyond public health applications, efforts to predict zoonoses provide unique research value by creating generalisable understanding of the ecological and evolutionary factors that promote viral emergence.</p></div>\",\"PeriodicalId\":11082,\"journal\":{\"name\":\"Current opinion in virology\",\"volume\":\"61 \",\"pages\":\"Article 101346\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879625723000469\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879625723000469","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
Predicting zoonotic potential of viruses: where are we?
The prospect of identifying high-risk viruses and designing interventions to pre-empt their emergence into human populations is enticing, but controversial, particularly when used to justify large-scale virus discovery initiatives. We review the current state of these efforts, identifying three broad classes of predictive models that have differences in data inputs that define their potential utility for triaging newly discovered viruses for further investigation. Prospects for model predictions of public health risk to guide preparedness depend not only on computational improvements to algorithms, but also on more efficient data generation in laboratory, field and clinical settings. Beyond public health applications, efforts to predict zoonoses provide unique research value by creating generalisable understanding of the ecological and evolutionary factors that promote viral emergence.
期刊介绍:
Current Opinion in Virology (COVIRO) is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up to date with the expanding volume of information published in the field of virology. It publishes 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Emerging viruses: interspecies transmission; Viral immunology; Viral pathogenesis; Preventive and therapeutic vaccines; Antiviral strategies; Virus structure and expression; Animal models for viral diseases; Engineering for viral resistance; Viruses and cancer; Virus vector interactions. There is also a section that changes every year to reflect hot topics in the field.