Souvik Kundu;Shawana Tabassum;Ritwesh A. Kumar;E. Dale Abel;Ratnesh Kumar
{"title":"用于重症监护室/儿童重症监护室设置的基于等离子光纤的连续活体血糖监测。","authors":"Souvik Kundu;Shawana Tabassum;Ritwesh A. Kumar;E. Dale Abel;Ratnesh Kumar","doi":"10.1109/TNB.2023.3303345","DOIUrl":null,"url":null,"abstract":"This paper reports a sensor architecture for continuous monitoring of biomarkers directly in the blood, especially for ICU/CCU patients requiring critical care and rapid biomarker measurement. The sensor is based on a simple optical fiber that can be inserted through a catheter into the bloodstream, wherein gold nanoparticles are attached at its far distal end as a plasmonic material for highly sensitive opto-chemical sensing of target biomolecules (glucose in our application) via the excitation of surface plasmon polaritons. For specificity, the nanoparticles are functionalized with a specific receptor enzyme that enables the localized surface plasmon resonance (LSPR)-based targeted bio-sensing. Further, a micro dialysis probe is introduced in the proposed architecture, which facilitates continuous monitoring for an extended period without fouling the sensor surface with cells and blood debris present in whole blood, leading to prolonged enhanced sensitivity and limit of detection, relative to existing state-of-the-art continuous monitoring devices that can conduct direct measurements in blood. To establish this proof-of-concept, we tested the sensor device to monitor glucose in-vivo involving an animal model, where continuous monitoring was done directly in the circulation of living rats. The sensor’s sensitivity to glucose was found to be 0.0354 a.u./mg.dl−1 with a detection limit of 50.89 mg/dl.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 1","pages":"157-166"},"PeriodicalIF":3.7000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmonic Optical Fiber Based Continuous in-Vivo Glucose Monitoring for ICU/CCU Setup\",\"authors\":\"Souvik Kundu;Shawana Tabassum;Ritwesh A. Kumar;E. Dale Abel;Ratnesh Kumar\",\"doi\":\"10.1109/TNB.2023.3303345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a sensor architecture for continuous monitoring of biomarkers directly in the blood, especially for ICU/CCU patients requiring critical care and rapid biomarker measurement. The sensor is based on a simple optical fiber that can be inserted through a catheter into the bloodstream, wherein gold nanoparticles are attached at its far distal end as a plasmonic material for highly sensitive opto-chemical sensing of target biomolecules (glucose in our application) via the excitation of surface plasmon polaritons. For specificity, the nanoparticles are functionalized with a specific receptor enzyme that enables the localized surface plasmon resonance (LSPR)-based targeted bio-sensing. Further, a micro dialysis probe is introduced in the proposed architecture, which facilitates continuous monitoring for an extended period without fouling the sensor surface with cells and blood debris present in whole blood, leading to prolonged enhanced sensitivity and limit of detection, relative to existing state-of-the-art continuous monitoring devices that can conduct direct measurements in blood. To establish this proof-of-concept, we tested the sensor device to monitor glucose in-vivo involving an animal model, where continuous monitoring was done directly in the circulation of living rats. The sensor’s sensitivity to glucose was found to be 0.0354 a.u./mg.dl−1 with a detection limit of 50.89 mg/dl.\",\"PeriodicalId\":13264,\"journal\":{\"name\":\"IEEE Transactions on NanoBioscience\",\"volume\":\"23 1\",\"pages\":\"157-166\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on NanoBioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10210598/\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10210598/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Plasmonic Optical Fiber Based Continuous in-Vivo Glucose Monitoring for ICU/CCU Setup
This paper reports a sensor architecture for continuous monitoring of biomarkers directly in the blood, especially for ICU/CCU patients requiring critical care and rapid biomarker measurement. The sensor is based on a simple optical fiber that can be inserted through a catheter into the bloodstream, wherein gold nanoparticles are attached at its far distal end as a plasmonic material for highly sensitive opto-chemical sensing of target biomolecules (glucose in our application) via the excitation of surface plasmon polaritons. For specificity, the nanoparticles are functionalized with a specific receptor enzyme that enables the localized surface plasmon resonance (LSPR)-based targeted bio-sensing. Further, a micro dialysis probe is introduced in the proposed architecture, which facilitates continuous monitoring for an extended period without fouling the sensor surface with cells and blood debris present in whole blood, leading to prolonged enhanced sensitivity and limit of detection, relative to existing state-of-the-art continuous monitoring devices that can conduct direct measurements in blood. To establish this proof-of-concept, we tested the sensor device to monitor glucose in-vivo involving an animal model, where continuous monitoring was done directly in the circulation of living rats. The sensor’s sensitivity to glucose was found to be 0.0354 a.u./mg.dl−1 with a detection limit of 50.89 mg/dl.
期刊介绍:
The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).