钩端螺旋体细胞壁水解酶(LIC_10271)结合肽聚糖、脂多糖和层粘连蛋白,该蛋白显示LysM和M23结构域在致病物种中共存。

IF 2.5 4区 生物学 Q3 MICROBIOLOGY
Abhijit Sarma , Gunasekaran Dhandapani , Homen Phukan , Prasun Kumar Bhunia , Arun Kumar De , Debasis Bhattacharya , T. Jebasingh , Madathiparambil G. Madanan
{"title":"钩端螺旋体细胞壁水解酶(LIC_10271)结合肽聚糖、脂多糖和层粘连蛋白,该蛋白显示LysM和M23结构域在致病物种中共存。","authors":"Abhijit Sarma ,&nbsp;Gunasekaran Dhandapani ,&nbsp;Homen Phukan ,&nbsp;Prasun Kumar Bhunia ,&nbsp;Arun Kumar De ,&nbsp;Debasis Bhattacharya ,&nbsp;T. Jebasingh ,&nbsp;Madathiparambil G. Madanan","doi":"10.1016/j.resmic.2023.104107","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Leptospirosis, a global reemerging zoonosis caused by the </span>spirochete </span><span><em>Leptospira</em></span><span><span>, has severe human and veterinary implications. Cell wall hydrolase (LIC_10271) with LytM (peptidase M23) and LysM domains are found to be associated with various pathogenic bacteria. These domains regulate effects on extracellular matrix and biofilm components, which promote cell wall remodeling and pathogen dissemination in the host. In this study, we present the cloning, expression, purification, and characterization of LIC_10271. To determine the localization of LIC_10271 within the </span>inner membrane of </span><em>Leptospira</em><span>, Triton X-114 subcellular fractionation<span><span><span> and immunoblot studies were performed. Furthermore, r-LIC_10271 binds with </span>peptidoglycan, lipopolysaccharide, and </span>laminin in a dose-dependent manner. Analysis of the signal peptide, M23, and LysM domains revealed conservation primarily within the P1 group of </span></span><em>Leptospira</em>, which encompasses the most pathogenic species. Moreover, the presence of native-LIC_10271 in the inner membrane and the distribution of M23 and LysM domains across pathogenic strains indicates their potential involvement in the interaction between the host and <em>Leptospira</em>.</p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"174 8","pages":"Article 104107"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leptospiral cell wall hydrolase (LIC_10271) binding peptidoglycan, lipopolysaccharide, and laminin and the protein show LysM and M23 domains are co-existing in pathogenic species\",\"authors\":\"Abhijit Sarma ,&nbsp;Gunasekaran Dhandapani ,&nbsp;Homen Phukan ,&nbsp;Prasun Kumar Bhunia ,&nbsp;Arun Kumar De ,&nbsp;Debasis Bhattacharya ,&nbsp;T. Jebasingh ,&nbsp;Madathiparambil G. Madanan\",\"doi\":\"10.1016/j.resmic.2023.104107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Leptospirosis, a global reemerging zoonosis caused by the </span>spirochete </span><span><em>Leptospira</em></span><span><span>, has severe human and veterinary implications. Cell wall hydrolase (LIC_10271) with LytM (peptidase M23) and LysM domains are found to be associated with various pathogenic bacteria. These domains regulate effects on extracellular matrix and biofilm components, which promote cell wall remodeling and pathogen dissemination in the host. In this study, we present the cloning, expression, purification, and characterization of LIC_10271. To determine the localization of LIC_10271 within the </span>inner membrane of </span><em>Leptospira</em><span>, Triton X-114 subcellular fractionation<span><span><span> and immunoblot studies were performed. Furthermore, r-LIC_10271 binds with </span>peptidoglycan, lipopolysaccharide, and </span>laminin in a dose-dependent manner. Analysis of the signal peptide, M23, and LysM domains revealed conservation primarily within the P1 group of </span></span><em>Leptospira</em>, which encompasses the most pathogenic species. Moreover, the presence of native-LIC_10271 in the inner membrane and the distribution of M23 and LysM domains across pathogenic strains indicates their potential involvement in the interaction between the host and <em>Leptospira</em>.</p></div>\",\"PeriodicalId\":21098,\"journal\":{\"name\":\"Research in microbiology\",\"volume\":\"174 8\",\"pages\":\"Article 104107\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923250823000827\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250823000827","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

钩端螺旋体病是由钩端螺旋杆菌引起的一种全球复发的人畜共患疾病,具有严重的人类和兽医影响。发现具有LytM(肽酶M23)和LysM结构域的细胞壁水解酶(LIC_10271)与各种致病菌有关。这些结构域调节对细胞外基质和生物膜成分的影响,促进细胞壁重塑和病原体在宿主中的传播。在本研究中,我们介绍了LIC_10271的克隆、表达、纯化和鉴定。为了确定LIC_10271在钩端螺旋体内膜内的定位,进行了Triton X-114亚细胞分级和免疫印迹研究。此外,r-LIC_10271以剂量依赖的方式与肽聚糖、脂多糖和层粘连蛋白结合。对信号肽、M23和LysM结构域的分析揭示了主要在钩端螺旋体P1组内的保守性,该组包括最具致病性的物种。此外,内膜中天然-LIC_10271的存在以及M23和LysM结构域在致病菌株中的分布表明它们可能参与宿主和钩端螺旋体之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leptospiral cell wall hydrolase (LIC_10271) binding peptidoglycan, lipopolysaccharide, and laminin and the protein show LysM and M23 domains are co-existing in pathogenic species

Leptospirosis, a global reemerging zoonosis caused by the spirochete Leptospira, has severe human and veterinary implications. Cell wall hydrolase (LIC_10271) with LytM (peptidase M23) and LysM domains are found to be associated with various pathogenic bacteria. These domains regulate effects on extracellular matrix and biofilm components, which promote cell wall remodeling and pathogen dissemination in the host. In this study, we present the cloning, expression, purification, and characterization of LIC_10271. To determine the localization of LIC_10271 within the inner membrane of Leptospira, Triton X-114 subcellular fractionation and immunoblot studies were performed. Furthermore, r-LIC_10271 binds with peptidoglycan, lipopolysaccharide, and laminin in a dose-dependent manner. Analysis of the signal peptide, M23, and LysM domains revealed conservation primarily within the P1 group of Leptospira, which encompasses the most pathogenic species. Moreover, the presence of native-LIC_10271 in the inner membrane and the distribution of M23 and LysM domains across pathogenic strains indicates their potential involvement in the interaction between the host and Leptospira.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in microbiology
Research in microbiology 生物-微生物学
CiteScore
4.10
自引率
3.80%
发文量
54
审稿时长
16 days
期刊介绍: Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信