离心泵在体外循环中同时控制静脉储备水平和动脉流速。

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Hidenobu Takahashi;Takuya Kinoshita;Zu Soh;Shigeyuki Okahara;Satoshi Miyamoto;Shinji Ninomiya;Toshio Tsuji
{"title":"离心泵在体外循环中同时控制静脉储备水平和动脉流速。","authors":"Hidenobu Takahashi;Takuya Kinoshita;Zu Soh;Shigeyuki Okahara;Satoshi Miyamoto;Shinji Ninomiya;Toshio Tsuji","doi":"10.1109/JTEHM.2023.3290951","DOIUrl":null,"url":null,"abstract":"Cardiopulmonary bypass (CPB) is an indispensable technique in cardiac surgery, providing the ability to temporarily replace cardiopulmonary function and create a bloodless surgical field. Traditionally, the operation of CPB systems has depended on the expertise and experience of skilled perfusionists. In particular, simultaneously controlling the arterial and venous occluders is difficult because the blood flow rate and reservoir level both change, and failure may put the patient’s life at risk. This study proposes an automatic control system with a two-degree-of-freedom model matching controller nested in an I-PD feedback controller to simultaneously regulate the blood flow rate and reservoir level. CPB operations were performed using glycerin and bovine blood as perfusate to simulate flow-up and flow-down phases. The results confirmed that the arterial blood flow rate followed the manually adjusted target venous blood flow rate, with an error of less than 5.32%, and the reservoir level was maintained, with an error of less than 3.44% from the target reservoir level. Then, we assessed the robustness of the control system against disturbances caused by venting/suction of blood. The resulting flow rate error was 5.95%, and the reservoir level error 2.02%. The accuracy of the proposed system is clinically satisfactory and within the allowable error range of 10% or less, meeting the standards set for perfusionists. Moreover, because of the system’s simple configuration, consisting of a camera and notebook PC, the system can easily be integrated with general CPB equipment. This practical design enables seamless adoption in clinical settings. With these advancements, the proposed system represents a significant step towards the automation of CPB.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"435-440"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10168928","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Control of Venous Reservoir Level and Arterial Flow Rate in Cardiopulmonary Bypass With a Centrifugal Pump\",\"authors\":\"Hidenobu Takahashi;Takuya Kinoshita;Zu Soh;Shigeyuki Okahara;Satoshi Miyamoto;Shinji Ninomiya;Toshio Tsuji\",\"doi\":\"10.1109/JTEHM.2023.3290951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiopulmonary bypass (CPB) is an indispensable technique in cardiac surgery, providing the ability to temporarily replace cardiopulmonary function and create a bloodless surgical field. Traditionally, the operation of CPB systems has depended on the expertise and experience of skilled perfusionists. In particular, simultaneously controlling the arterial and venous occluders is difficult because the blood flow rate and reservoir level both change, and failure may put the patient’s life at risk. This study proposes an automatic control system with a two-degree-of-freedom model matching controller nested in an I-PD feedback controller to simultaneously regulate the blood flow rate and reservoir level. CPB operations were performed using glycerin and bovine blood as perfusate to simulate flow-up and flow-down phases. The results confirmed that the arterial blood flow rate followed the manually adjusted target venous blood flow rate, with an error of less than 5.32%, and the reservoir level was maintained, with an error of less than 3.44% from the target reservoir level. Then, we assessed the robustness of the control system against disturbances caused by venting/suction of blood. The resulting flow rate error was 5.95%, and the reservoir level error 2.02%. The accuracy of the proposed system is clinically satisfactory and within the allowable error range of 10% or less, meeting the standards set for perfusionists. Moreover, because of the system’s simple configuration, consisting of a camera and notebook PC, the system can easily be integrated with general CPB equipment. This practical design enables seamless adoption in clinical settings. With these advancements, the proposed system represents a significant step towards the automation of CPB.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"11 \",\"pages\":\"435-440\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10168928\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10168928/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10168928/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

体外循环(CPB)是心脏外科手术中不可或缺的技术,它能够暂时取代心肺功能,创造一个不流血的手术环境。传统上,CPB系统的操作依赖于熟练灌注师的专业知识和经验。特别地,同时控制动脉和静脉封堵器是困难的,因为血液流速和储液器水平都会改变,并且失败可能会使患者的生命处于危险之中。本研究提出了一种自动控制系统,该系统将两自由度模型匹配控制器嵌套在I-PD反馈控制器中,以同时调节血液流速和储液器液位。CPB手术使用甘油和牛血作为灌注液来模拟上行和下行阶段。结果证实,动脉血流量遵循手动调整的目标静脉血流量,误差小于5.32%,并保持了水库水位,与目标水库水位的误差小于3.44%。然后,我们评估了控制系统对血液排出/吸入引起的干扰的鲁棒性。由此产生的流速误差为5.95%,水库水位误差为2.02%。所提出的系统的准确性在临床上是令人满意的,并且在10%或更小的允许误差范围内,满足灌注师的标准。此外,由于该系统配置简单,由摄像头和笔记本电脑组成,因此可以很容易地与通用CPB设备集成。这种实用的设计能够在临床环境中无缝采用。随着这些进步,所提出的系统代表着CPB自动化的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simultaneous Control of Venous Reservoir Level and Arterial Flow Rate in Cardiopulmonary Bypass With a Centrifugal Pump

Simultaneous Control of Venous Reservoir Level and Arterial Flow Rate in Cardiopulmonary Bypass With a Centrifugal Pump

Simultaneous Control of Venous Reservoir Level and Arterial Flow Rate in Cardiopulmonary Bypass With a Centrifugal Pump

Simultaneous Control of Venous Reservoir Level and Arterial Flow Rate in Cardiopulmonary Bypass With a Centrifugal Pump
Cardiopulmonary bypass (CPB) is an indispensable technique in cardiac surgery, providing the ability to temporarily replace cardiopulmonary function and create a bloodless surgical field. Traditionally, the operation of CPB systems has depended on the expertise and experience of skilled perfusionists. In particular, simultaneously controlling the arterial and venous occluders is difficult because the blood flow rate and reservoir level both change, and failure may put the patient’s life at risk. This study proposes an automatic control system with a two-degree-of-freedom model matching controller nested in an I-PD feedback controller to simultaneously regulate the blood flow rate and reservoir level. CPB operations were performed using glycerin and bovine blood as perfusate to simulate flow-up and flow-down phases. The results confirmed that the arterial blood flow rate followed the manually adjusted target venous blood flow rate, with an error of less than 5.32%, and the reservoir level was maintained, with an error of less than 3.44% from the target reservoir level. Then, we assessed the robustness of the control system against disturbances caused by venting/suction of blood. The resulting flow rate error was 5.95%, and the reservoir level error 2.02%. The accuracy of the proposed system is clinically satisfactory and within the allowable error range of 10% or less, meeting the standards set for perfusionists. Moreover, because of the system’s simple configuration, consisting of a camera and notebook PC, the system can easily be integrated with general CPB equipment. This practical design enables seamless adoption in clinical settings. With these advancements, the proposed system represents a significant step towards the automation of CPB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
2.90%
发文量
65
审稿时长
27 weeks
期刊介绍: The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信