缺血预处理改善上肢耐力表现,但不改变V / O2动力学。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
D Bellini, C Chapman, D Peden, S P Hoekstra, R A Ferguson, C A Leicht
{"title":"缺血预处理改善上肢耐力表现,但不改变V / O2动力学。","authors":"D Bellini,&nbsp;C Chapman,&nbsp;D Peden,&nbsp;S P Hoekstra,&nbsp;R A Ferguson,&nbsp;C A Leicht","doi":"10.1080/17461391.2022.2103741","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Whilst pre-exercise ischaemic preconditioning (IPC) can improve lower-body exercise performance, its impact on upper-limb performance has received little attention. This study examines the influence of IPC on upper-body exercise performance and oxygen uptake (V̇O<sub>2</sub>) kinetics.</p><p><strong>Methods: </strong>Eleven recreationally-active males (24 ± 2 years) completed an arm-crank graded exercise test to exhaustion to determine the power outputs at the ventilatory thresholds (VT1 and VT2) and V̇O<sub>2peak</sub> (40.0 ± 7.4 ml·kg<sup>-1</sup>·min<sup>-1</sup>). Four main trials were conducted, two following IPC (4 × 5-min, 220 mmHg contralateral upper-limb occlusion), the other two following SHAM (4 × 5-min, 20 mmHg). The first two trials consisted of a 15-minute constant work rate and the last two time-to-exhaustion (TTE) arm-crank tests at the power equivalents of 95% VT1 (LOW) and VT2 (HIGH), respectively. Pulmonary V̇O<sub>2</sub> kinetics, heart rate, blood-lactate concentration, and rating of perceived exertion were recorded throughout exercise.</p><p><strong>Results: </strong>TTE during HIGH was longer following IPC than SHAM (459 ± 115 vs 395 ± 102 s, <i>p </i>= .004). Mean response time and change in V̇O<sub>2</sub> between 2-min and end exercise (ΔV̇O<sub>2</sub>) were not different between IPC and SHAM for arm-cranking at both LOW (80.3 ± 19.0 vs 90.3 ± 23.5 s [<i>p </i>= .06], 457 ± 184 vs 443 ± 245 ml [<i>p </i>= .83]) and HIGH (96.6 ± 31.2 vs 92.1 ± 24.4 s [<i>p </i>= .65], 617 ± 321 vs 649 ± 230 ml [<i>p </i>= .74]). Heart rate, blood-lactate concentration, and rating of perceived exertion did not differ between conditions (all <i>p</i> ≥ .05).</p><p><strong>Conclusion: </strong>TTE was longer following IPC during upper-body exercise despite unchanged V̇O<sub>2</sub> kinetics.<b>Highlights</b>Whilst pre-exercise ischaemic preconditioning can improve lower-body exercise performance and alter V̇O<sub>2</sub> kinetics, its impact on upper-limb performance has received little attention.An acute bout of ischaemic preconditioning prior to arm-crank ergometry exercise significantly improved time to exhaustion compared to a sham control condition.V̇O<sub>2</sub> kinetics in response to ischaemic preconditioning remained unchanged, suggesting alternative mechanisms may explain performance improvements.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ischaemic preconditioning improves upper-body endurance performance without altering V̇O<sub>2</sub> kinetics.\",\"authors\":\"D Bellini,&nbsp;C Chapman,&nbsp;D Peden,&nbsp;S P Hoekstra,&nbsp;R A Ferguson,&nbsp;C A Leicht\",\"doi\":\"10.1080/17461391.2022.2103741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Whilst pre-exercise ischaemic preconditioning (IPC) can improve lower-body exercise performance, its impact on upper-limb performance has received little attention. This study examines the influence of IPC on upper-body exercise performance and oxygen uptake (V̇O<sub>2</sub>) kinetics.</p><p><strong>Methods: </strong>Eleven recreationally-active males (24 ± 2 years) completed an arm-crank graded exercise test to exhaustion to determine the power outputs at the ventilatory thresholds (VT1 and VT2) and V̇O<sub>2peak</sub> (40.0 ± 7.4 ml·kg<sup>-1</sup>·min<sup>-1</sup>). Four main trials were conducted, two following IPC (4 × 5-min, 220 mmHg contralateral upper-limb occlusion), the other two following SHAM (4 × 5-min, 20 mmHg). The first two trials consisted of a 15-minute constant work rate and the last two time-to-exhaustion (TTE) arm-crank tests at the power equivalents of 95% VT1 (LOW) and VT2 (HIGH), respectively. Pulmonary V̇O<sub>2</sub> kinetics, heart rate, blood-lactate concentration, and rating of perceived exertion were recorded throughout exercise.</p><p><strong>Results: </strong>TTE during HIGH was longer following IPC than SHAM (459 ± 115 vs 395 ± 102 s, <i>p </i>= .004). Mean response time and change in V̇O<sub>2</sub> between 2-min and end exercise (ΔV̇O<sub>2</sub>) were not different between IPC and SHAM for arm-cranking at both LOW (80.3 ± 19.0 vs 90.3 ± 23.5 s [<i>p </i>= .06], 457 ± 184 vs 443 ± 245 ml [<i>p </i>= .83]) and HIGH (96.6 ± 31.2 vs 92.1 ± 24.4 s [<i>p </i>= .65], 617 ± 321 vs 649 ± 230 ml [<i>p </i>= .74]). Heart rate, blood-lactate concentration, and rating of perceived exertion did not differ between conditions (all <i>p</i> ≥ .05).</p><p><strong>Conclusion: </strong>TTE was longer following IPC during upper-body exercise despite unchanged V̇O<sub>2</sub> kinetics.<b>Highlights</b>Whilst pre-exercise ischaemic preconditioning can improve lower-body exercise performance and alter V̇O<sub>2</sub> kinetics, its impact on upper-limb performance has received little attention.An acute bout of ischaemic preconditioning prior to arm-crank ergometry exercise significantly improved time to exhaustion compared to a sham control condition.V̇O<sub>2</sub> kinetics in response to ischaemic preconditioning remained unchanged, suggesting alternative mechanisms may explain performance improvements.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17461391.2022.2103741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17461391.2022.2103741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

目的:虽然运动前缺血预处理(IPC)可以改善下体运动表现,但其对上肢运动表现的影响却很少被关注。本研究探讨了IPC对上肢运动表现和氧摄取动力学的影响。方法:11例(24±2岁)从事休闲运动的男性,采用臂曲柄分级运动至疲劳试验,测定其在通气阈值(VT1和VT2)和V (o2)峰值(40.0±7.4 ml·kg-1·min-1)时的输出功率。进行了四项主要试验,两项采用IPC (4 × 5分钟,220 mmHg对侧上肢闭塞),另外两项采用SHAM (4 × 5分钟,20 mmHg)。前两次试验包括15分钟恒定工作速率和最后两次在95% VT1 (LOW)和VT2 (HIGH)功率等效下的疲劳时间(TTE)臂曲柄试验。在整个运动过程中记录肺V / O2动力学、心率、血乳酸浓度和感觉劳累等级。结果:IPC后HIGH期TTE时间长于SHAM(459±115 s vs 395±102 s, p = 0.004)。在两种低强度下,IPC和SHAM的手臂转动平均反应时间和2分钟至运动结束时的V (O2)变化(ΔV)无差异(80.3±19.0 vs 90.3±23.5 s) [p =。]06], 457±184 vs 443±245毫升(p =())和高(96.6±31.2 vs 92.1±24.4 s [p =。[65], 617±321 vs 649±230 ml [p = .74])。两组患者的心率、血乳酸浓度和劳累程度无显著差异(p均≥0.05)。结论:上肢运动时,尽管V氧动力学不变,但IPC后TTE延长。虽然运动前缺血预处理可以改善下体运动表现并改变V / O2动力学,但其对上肢运动表现的影响却很少受到关注。与假对照条件相比,臂曲柄几何运动前的急性缺血预处理显著改善了疲劳时间。响应缺血预处理的V / O2动力学保持不变,表明其他机制可能解释了性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ischaemic preconditioning improves upper-body endurance performance without altering V̇O2 kinetics.

Purpose: Whilst pre-exercise ischaemic preconditioning (IPC) can improve lower-body exercise performance, its impact on upper-limb performance has received little attention. This study examines the influence of IPC on upper-body exercise performance and oxygen uptake (V̇O2) kinetics.

Methods: Eleven recreationally-active males (24 ± 2 years) completed an arm-crank graded exercise test to exhaustion to determine the power outputs at the ventilatory thresholds (VT1 and VT2) and V̇O2peak (40.0 ± 7.4 ml·kg-1·min-1). Four main trials were conducted, two following IPC (4 × 5-min, 220 mmHg contralateral upper-limb occlusion), the other two following SHAM (4 × 5-min, 20 mmHg). The first two trials consisted of a 15-minute constant work rate and the last two time-to-exhaustion (TTE) arm-crank tests at the power equivalents of 95% VT1 (LOW) and VT2 (HIGH), respectively. Pulmonary V̇O2 kinetics, heart rate, blood-lactate concentration, and rating of perceived exertion were recorded throughout exercise.

Results: TTE during HIGH was longer following IPC than SHAM (459 ± 115 vs 395 ± 102 s, p = .004). Mean response time and change in V̇O2 between 2-min and end exercise (ΔV̇O2) were not different between IPC and SHAM for arm-cranking at both LOW (80.3 ± 19.0 vs 90.3 ± 23.5 s [p = .06], 457 ± 184 vs 443 ± 245 ml [p = .83]) and HIGH (96.6 ± 31.2 vs 92.1 ± 24.4 s [p = .65], 617 ± 321 vs 649 ± 230 ml [p = .74]). Heart rate, blood-lactate concentration, and rating of perceived exertion did not differ between conditions (all p ≥ .05).

Conclusion: TTE was longer following IPC during upper-body exercise despite unchanged V̇O2 kinetics.HighlightsWhilst pre-exercise ischaemic preconditioning can improve lower-body exercise performance and alter V̇O2 kinetics, its impact on upper-limb performance has received little attention.An acute bout of ischaemic preconditioning prior to arm-crank ergometry exercise significantly improved time to exhaustion compared to a sham control condition.V̇O2 kinetics in response to ischaemic preconditioning remained unchanged, suggesting alternative mechanisms may explain performance improvements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信