含协变量的多水平潜在类分析的两步估计。

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Psychometrika Pub Date : 2023-12-01 Epub Date: 2023-08-06 DOI:10.1007/s11336-023-09929-2
Roberto Di Mari, Zsuzsa Bakk, Jennifer Oser, Jouni Kuha
{"title":"含协变量的多水平潜在类分析的两步估计。","authors":"Roberto Di Mari, Zsuzsa Bakk, Jennifer Oser, Jouni Kuha","doi":"10.1007/s11336-023-09929-2","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a two-step estimator for multilevel latent class analysis (LCA) with covariates. The measurement model for observed items is estimated in its first step, and in the second step covariates are added in the model, keeping the measurement model parameters fixed. We discuss model identification, and derive an Expectation Maximization algorithm for efficient implementation of the estimator. By means of an extensive simulation study we show that (1) this approach performs similarly to existing stepwise estimators for multilevel LCA but with much reduced computing time, and (2) it yields approximately unbiased parameter estimates with a negligible loss of efficiency compared to the one-step estimator. The proposal is illustrated with a cross-national analysis of predictors of citizenship norms.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1144-1170"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656341/pdf/","citationCount":"0","resultStr":"{\"title\":\"A two-step estimator for multilevel latent class analysis with covariates.\",\"authors\":\"Roberto Di Mari, Zsuzsa Bakk, Jennifer Oser, Jouni Kuha\",\"doi\":\"10.1007/s11336-023-09929-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a two-step estimator for multilevel latent class analysis (LCA) with covariates. The measurement model for observed items is estimated in its first step, and in the second step covariates are added in the model, keeping the measurement model parameters fixed. We discuss model identification, and derive an Expectation Maximization algorithm for efficient implementation of the estimator. By means of an extensive simulation study we show that (1) this approach performs similarly to existing stepwise estimators for multilevel LCA but with much reduced computing time, and (2) it yields approximately unbiased parameter estimates with a negligible loss of efficiency compared to the one-step estimator. The proposal is illustrated with a cross-national analysis of predictors of citizenship norms.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":\" \",\"pages\":\"1144-1170\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656341/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1007/s11336-023-09929-2\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-023-09929-2","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种具有协变量的多水平潜在类分析(LCA)的两步估计器。第一步对观测项目的测量模型进行估计,第二步在模型中加入协变量,保持测量模型参数不变。我们讨论了模型辨识,并推导了一种期望最大化算法来有效地实现估计器。通过广泛的模拟研究,我们表明:(1)这种方法与现有的多级LCA逐步估计器相似,但计算时间大大减少,(2)与一步估计器相比,它产生近似无偏的参数估计,效率损失可以忽略不计。该提案通过对公民规范预测因素的跨国分析加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A two-step estimator for multilevel latent class analysis with covariates.

A two-step estimator for multilevel latent class analysis with covariates.

We propose a two-step estimator for multilevel latent class analysis (LCA) with covariates. The measurement model for observed items is estimated in its first step, and in the second step covariates are added in the model, keeping the measurement model parameters fixed. We discuss model identification, and derive an Expectation Maximization algorithm for efficient implementation of the estimator. By means of an extensive simulation study we show that (1) this approach performs similarly to existing stepwise estimators for multilevel LCA but with much reduced computing time, and (2) it yields approximately unbiased parameter estimates with a negligible loss of efficiency compared to the one-step estimator. The proposal is illustrated with a cross-national analysis of predictors of citizenship norms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信