{"title":"铁(III)还原与元素硫或四硫酸盐被嗜酸微生物氧化的速率以及硫中间体的检测。","authors":"Anja Breuker, Axel Schippers","doi":"10.1016/j.resmic.2023.104110","DOIUrl":null,"url":null,"abstract":"<div><p>Bioleaching processes and acid mine drainage (AMD) generation are mainly driven by aerobic microbial iron(II) and inorganic sulfur/compound oxidation. Dissimilatory iron(III) reduction coupled to sulfur/compound oxidation (DIRSO) by acidophilic microorganisms has been described for anaerobic cultures, but iron reduction was observed under aerobic conditions as well. Aim of this study was to explore reaction rates and mechanisms of this process. Cell-specific iron(III) reduction rates for different <em>Acidithiobacillus</em> (<em>At.</em>) strains during batch culture growth or stationary phase with iron(III) (∼40 mM) as electron acceptor and elemental sulfur or tetrathionate as electron donor (1% or 5 mM, respectively) were determined. The rates were highest under anaerobic conditions for the <em>At. ferrooxidans</em> type strain with 6.8 × 10<sup>6</sup> and 1.1 × 10<sup>7</sup> reduced iron(III) ions per second per cell for growth on elemental sulfur and tetrathionate, respectively. The iron(III) reduction rates were somehow lower for the anaerobically sulfur grown archaeon <em>Ferroplasma acidiphilum</em>, and lowest for the sulfur grown <em>At. caldus</em> type strain under aerobic conditions (1.7 × 10<sup>6</sup> and 7.3 × 10<sup>4</sup> reduced iron(III) ions per second per cell, respectively). The rates for five strains of <em>At. thiooxidans</em> (aerobe) were in between those for <em>At. ferrooxidans</em> (anaerobe) and <em>At. caldus</em> (aerobe). There was no pronounced pH dependence of iron(III) reduction rates in the range of pH 1.0–1.9 for the type strains of all species but rates increased with increasing pH for four other <em>At. thiooxidans</em> strains. Thiosulfate as sulfur intermediate was found for <em>At. ferrooxidans</em> during anaerobic growths on tetrathionate and iron(III) but not during anaerobic growths on elemental sulfur and iron(III), and a small concentration was measured during aerobic growths on tetrathionate without iron(III). For the <em>At. thiooxidans</em> type strain thiosulfate was found with tetrathionate grown cells under aerobic conditions in presence and absence of iron(III), but not with sulfur grown cells. Evidence for hydrogen sulfide production at low pH was found for the <em>At. ferrooxidans</em> as well as the <em>At. thiooxidans</em> type strains during microaerophilic growth on elemental sulfur and for <em>At. ferrooxidans</em> during anaerobic growths on tetrathionate and iron(III). The occurrence of sulfur compound intermediates supports the hypothesis that chemical reduction of iron(III) ions takes place by sulfur compounds released by the microbial cells.</p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 1","pages":"Article 104110"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0923250823000852/pdfft?md5=113ed6974c2a60c49a0f98645f745eb4&pid=1-s2.0-S0923250823000852-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Rates of iron(III) reduction coupled to elemental sulfur or tetrathionate oxidation by acidophilic microorganisms and detection of sulfur intermediates\",\"authors\":\"Anja Breuker, Axel Schippers\",\"doi\":\"10.1016/j.resmic.2023.104110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bioleaching processes and acid mine drainage (AMD) generation are mainly driven by aerobic microbial iron(II) and inorganic sulfur/compound oxidation. Dissimilatory iron(III) reduction coupled to sulfur/compound oxidation (DIRSO) by acidophilic microorganisms has been described for anaerobic cultures, but iron reduction was observed under aerobic conditions as well. Aim of this study was to explore reaction rates and mechanisms of this process. Cell-specific iron(III) reduction rates for different <em>Acidithiobacillus</em> (<em>At.</em>) strains during batch culture growth or stationary phase with iron(III) (∼40 mM) as electron acceptor and elemental sulfur or tetrathionate as electron donor (1% or 5 mM, respectively) were determined. The rates were highest under anaerobic conditions for the <em>At. ferrooxidans</em> type strain with 6.8 × 10<sup>6</sup> and 1.1 × 10<sup>7</sup> reduced iron(III) ions per second per cell for growth on elemental sulfur and tetrathionate, respectively. The iron(III) reduction rates were somehow lower for the anaerobically sulfur grown archaeon <em>Ferroplasma acidiphilum</em>, and lowest for the sulfur grown <em>At. caldus</em> type strain under aerobic conditions (1.7 × 10<sup>6</sup> and 7.3 × 10<sup>4</sup> reduced iron(III) ions per second per cell, respectively). The rates for five strains of <em>At. thiooxidans</em> (aerobe) were in between those for <em>At. ferrooxidans</em> (anaerobe) and <em>At. caldus</em> (aerobe). There was no pronounced pH dependence of iron(III) reduction rates in the range of pH 1.0–1.9 for the type strains of all species but rates increased with increasing pH for four other <em>At. thiooxidans</em> strains. Thiosulfate as sulfur intermediate was found for <em>At. ferrooxidans</em> during anaerobic growths on tetrathionate and iron(III) but not during anaerobic growths on elemental sulfur and iron(III), and a small concentration was measured during aerobic growths on tetrathionate without iron(III). For the <em>At. thiooxidans</em> type strain thiosulfate was found with tetrathionate grown cells under aerobic conditions in presence and absence of iron(III), but not with sulfur grown cells. Evidence for hydrogen sulfide production at low pH was found for the <em>At. ferrooxidans</em> as well as the <em>At. thiooxidans</em> type strains during microaerophilic growth on elemental sulfur and for <em>At. ferrooxidans</em> during anaerobic growths on tetrathionate and iron(III). The occurrence of sulfur compound intermediates supports the hypothesis that chemical reduction of iron(III) ions takes place by sulfur compounds released by the microbial cells.</p></div>\",\"PeriodicalId\":21098,\"journal\":{\"name\":\"Research in microbiology\",\"volume\":\"175 1\",\"pages\":\"Article 104110\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0923250823000852/pdfft?md5=113ed6974c2a60c49a0f98645f745eb4&pid=1-s2.0-S0923250823000852-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923250823000852\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250823000852","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Rates of iron(III) reduction coupled to elemental sulfur or tetrathionate oxidation by acidophilic microorganisms and detection of sulfur intermediates
Bioleaching processes and acid mine drainage (AMD) generation are mainly driven by aerobic microbial iron(II) and inorganic sulfur/compound oxidation. Dissimilatory iron(III) reduction coupled to sulfur/compound oxidation (DIRSO) by acidophilic microorganisms has been described for anaerobic cultures, but iron reduction was observed under aerobic conditions as well. Aim of this study was to explore reaction rates and mechanisms of this process. Cell-specific iron(III) reduction rates for different Acidithiobacillus (At.) strains during batch culture growth or stationary phase with iron(III) (∼40 mM) as electron acceptor and elemental sulfur or tetrathionate as electron donor (1% or 5 mM, respectively) were determined. The rates were highest under anaerobic conditions for the At. ferrooxidans type strain with 6.8 × 106 and 1.1 × 107 reduced iron(III) ions per second per cell for growth on elemental sulfur and tetrathionate, respectively. The iron(III) reduction rates were somehow lower for the anaerobically sulfur grown archaeon Ferroplasma acidiphilum, and lowest for the sulfur grown At. caldus type strain under aerobic conditions (1.7 × 106 and 7.3 × 104 reduced iron(III) ions per second per cell, respectively). The rates for five strains of At. thiooxidans (aerobe) were in between those for At. ferrooxidans (anaerobe) and At. caldus (aerobe). There was no pronounced pH dependence of iron(III) reduction rates in the range of pH 1.0–1.9 for the type strains of all species but rates increased with increasing pH for four other At. thiooxidans strains. Thiosulfate as sulfur intermediate was found for At. ferrooxidans during anaerobic growths on tetrathionate and iron(III) but not during anaerobic growths on elemental sulfur and iron(III), and a small concentration was measured during aerobic growths on tetrathionate without iron(III). For the At. thiooxidans type strain thiosulfate was found with tetrathionate grown cells under aerobic conditions in presence and absence of iron(III), but not with sulfur grown cells. Evidence for hydrogen sulfide production at low pH was found for the At. ferrooxidans as well as the At. thiooxidans type strains during microaerophilic growth on elemental sulfur and for At. ferrooxidans during anaerobic growths on tetrathionate and iron(III). The occurrence of sulfur compound intermediates supports the hypothesis that chemical reduction of iron(III) ions takes place by sulfur compounds released by the microbial cells.
期刊介绍:
Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.