T迷宫中规则转换后大鼠前额叶皮层和纹状体区域的激活。

IF 1.8 4区 医学 Q4 NEUROSCIENCES
Learning & memory Pub Date : 2023-07-24 Print Date: 2023-07-01 DOI:10.1101/lm.053795.123
Virginie Oberto, Hongying Gao, Ana Biondi, Susan J Sara, Sidney I Wiener
{"title":"T迷宫中规则转换后大鼠前额叶皮层和纹状体区域的激活。","authors":"Virginie Oberto, Hongying Gao, Ana Biondi, Susan J Sara, Sidney I Wiener","doi":"10.1101/lm.053795.123","DOIUrl":null,"url":null,"abstract":"<p><p>Prefrontal cortical and striatal areas have been identified by inactivation or lesion studies to be required for behavioral flexibility, including selecting and processing of different types of information. In order to identify these networks activated selectively during the acquisition of new reward contingency rules, rats were trained to discriminate orientations of bars presented in pseudorandom sequence on two video monitors positioned behind the goal sites on a T-maze with return arms. A second group already trained in the visual discrimination task learned to alternate left and right goal arm visits in the same maze while ignoring the visual cues still being presented. In each experimental group, once the rats reached criterion performance, the brains were prepared after a 90-min delay for later processing for c-fos immunohistochemistry. While both groups extinguished a prior strategy and acquired a new rule, they differed by the identity of the strategies and previous learning experience. Among the 28 forebrain areas examined, there were significant increases in the relative density of c-fos immunoreactive cell bodies after learning the second rule in the prefrontal cortex cingulate, the prelimbic and infralimbic areas, the dorsomedial striatum and the core of the nucleus accumbens, the ventral subiculum, and the central nucleus of the amygdala. These largely correspond to structures previously identified in inactivation studies, and their neurons fire synchronously during learning and strategy shifts. The data suggest that this dynamic network may underlie reward-based selection for action-a type of cognitive flexibility.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 7","pages":"133-138"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519402/pdf/","citationCount":"0","resultStr":"{\"title\":\"Activation of prefrontal cortex and striatal regions in rats after shifting between rules in a T-maze.\",\"authors\":\"Virginie Oberto, Hongying Gao, Ana Biondi, Susan J Sara, Sidney I Wiener\",\"doi\":\"10.1101/lm.053795.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prefrontal cortical and striatal areas have been identified by inactivation or lesion studies to be required for behavioral flexibility, including selecting and processing of different types of information. In order to identify these networks activated selectively during the acquisition of new reward contingency rules, rats were trained to discriminate orientations of bars presented in pseudorandom sequence on two video monitors positioned behind the goal sites on a T-maze with return arms. A second group already trained in the visual discrimination task learned to alternate left and right goal arm visits in the same maze while ignoring the visual cues still being presented. In each experimental group, once the rats reached criterion performance, the brains were prepared after a 90-min delay for later processing for c-fos immunohistochemistry. While both groups extinguished a prior strategy and acquired a new rule, they differed by the identity of the strategies and previous learning experience. Among the 28 forebrain areas examined, there were significant increases in the relative density of c-fos immunoreactive cell bodies after learning the second rule in the prefrontal cortex cingulate, the prelimbic and infralimbic areas, the dorsomedial striatum and the core of the nucleus accumbens, the ventral subiculum, and the central nucleus of the amygdala. These largely correspond to structures previously identified in inactivation studies, and their neurons fire synchronously during learning and strategy shifts. The data suggest that this dynamic network may underlie reward-based selection for action-a type of cognitive flexibility.</p>\",\"PeriodicalId\":18003,\"journal\":{\"name\":\"Learning & memory\",\"volume\":\"30 7\",\"pages\":\"133-138\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519402/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning & memory\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1101/lm.053795.123\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.053795.123","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

额前皮质和纹状体区域已通过失活或损伤研究确定为行为灵活性所需,包括选择和处理不同类型的信息。为了识别在获取新的奖励应急规则过程中选择性激活的这些网络,训练大鼠辨别位于带返回臂的T型迷宫目标位置后面的两个视频监视器上以伪随机序列呈现的杆的方向。第二组已经接受了视觉辨别任务的训练,他们学会在同一个迷宫中交替进行左、右门臂访问,同时忽略仍在呈现的视觉线索。在每个实验组中,一旦大鼠达到标准性能,在延迟90分钟后准备大脑,以便稍后进行c-fos免疫组织化学处理。虽然两组人都消灭了先前的策略并获得了新的规则,但他们在策略的身份和先前的学习经验方面有所不同。在检查的28个前脑区域中,学习第二规则后,c-fos免疫反应细胞体的相对密度在前额叶皮层扣带、边缘前和边缘下区域、背内侧纹状体和伏隔核核心、腹侧亚托和杏仁核中央核显著增加。这些在很大程度上对应于先前在失活研究中确定的结构,并且它们的神经元在学习和策略转变过程中同步放电。数据表明,这种动态网络可能是基于奖励的行动选择的基础,这是一种认知灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activation of prefrontal cortex and striatal regions in rats after shifting between rules in a T-maze.

Prefrontal cortical and striatal areas have been identified by inactivation or lesion studies to be required for behavioral flexibility, including selecting and processing of different types of information. In order to identify these networks activated selectively during the acquisition of new reward contingency rules, rats were trained to discriminate orientations of bars presented in pseudorandom sequence on two video monitors positioned behind the goal sites on a T-maze with return arms. A second group already trained in the visual discrimination task learned to alternate left and right goal arm visits in the same maze while ignoring the visual cues still being presented. In each experimental group, once the rats reached criterion performance, the brains were prepared after a 90-min delay for later processing for c-fos immunohistochemistry. While both groups extinguished a prior strategy and acquired a new rule, they differed by the identity of the strategies and previous learning experience. Among the 28 forebrain areas examined, there were significant increases in the relative density of c-fos immunoreactive cell bodies after learning the second rule in the prefrontal cortex cingulate, the prelimbic and infralimbic areas, the dorsomedial striatum and the core of the nucleus accumbens, the ventral subiculum, and the central nucleus of the amygdala. These largely correspond to structures previously identified in inactivation studies, and their neurons fire synchronously during learning and strategy shifts. The data suggest that this dynamic network may underlie reward-based selection for action-a type of cognitive flexibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Learning & memory
Learning & memory 医学-神经科学
CiteScore
3.60
自引率
5.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信