研究DNA负载聚乙二醇化脂质纳米粒子的作用机制。

IF 4.2 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Luca Digiacomo PhD , Serena Renzi MSc , Erica Quagliarini PhD , Daniela Pozzi PhD , Heinz Amenitsch PhD , Gianmarco Ferri PhD , Luca Pesce PhD , Valentina De Lorenzi PhD , Giulia Matteoli MSc , Francesco Cardarelli PhD , Giulio Caracciolo (Prof.)
{"title":"研究DNA负载聚乙二醇化脂质纳米粒子的作用机制。","authors":"Luca Digiacomo PhD ,&nbsp;Serena Renzi MSc ,&nbsp;Erica Quagliarini PhD ,&nbsp;Daniela Pozzi PhD ,&nbsp;Heinz Amenitsch PhD ,&nbsp;Gianmarco Ferri PhD ,&nbsp;Luca Pesce PhD ,&nbsp;Valentina De Lorenzi PhD ,&nbsp;Giulia Matteoli MSc ,&nbsp;Francesco Cardarelli PhD ,&nbsp;Giulio Caracciolo (Prof.)","doi":"10.1016/j.nano.2023.102697","DOIUrl":null,"url":null,"abstract":"<div><p>PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963423000485/pdfft?md5=67c4c107222b327ba2036e697171b843&pid=1-s2.0-S1549963423000485-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigating the mechanism of action of DNA-loaded PEGylated lipid nanoparticles\",\"authors\":\"Luca Digiacomo PhD ,&nbsp;Serena Renzi MSc ,&nbsp;Erica Quagliarini PhD ,&nbsp;Daniela Pozzi PhD ,&nbsp;Heinz Amenitsch PhD ,&nbsp;Gianmarco Ferri PhD ,&nbsp;Luca Pesce PhD ,&nbsp;Valentina De Lorenzi PhD ,&nbsp;Giulia Matteoli MSc ,&nbsp;Francesco Cardarelli PhD ,&nbsp;Giulio Caracciolo (Prof.)\",\"doi\":\"10.1016/j.nano.2023.102697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development.</p></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1549963423000485/pdfft?md5=67c4c107222b327ba2036e697171b843&pid=1-s2.0-S1549963423000485-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963423000485\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963423000485","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

聚乙二醇化脂质纳米颗粒(LNP)通常用于递送生物活性分子,但聚乙二醇化在细胞和亚细胞水平的DNA负载的LNP相互作用中的作用仍知之甚少。在本研究中,我们使用基因报告子技术、动态光散射(DLS)、同步加速器小角度X射线散射(SAXS)和荧光共聚焦显微镜(FCS)研究了DNA负载PEG化LNP的作用机制。我们发现PEG对DNA LNP的大小或纳米结构没有显著影响,但降低了它们的ζ电位和与阴离子细胞膜的相互作用。聚乙二醇化增加了LNP的结构稳定性,并导致较低的DNA卸载。FCS实验表明,PEG化的LNP在细胞内完整地内化,并在很大程度上穿梭于溶酶体,而未PEG化的LN在质膜上经历大量的不稳定。这些发现可以为基因递送和疫苗开发的DNA负载LNP的设计、优化和验证提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the mechanism of action of DNA-loaded PEGylated lipid nanoparticles

Investigating the mechanism of action of DNA-loaded PEGylated lipid nanoparticles

PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
0.00%
发文量
133
审稿时长
42 days
期刊介绍: The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine. Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信