Rescorla-Wagner模型,预测误差和恐惧学习

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Joanna Oi-Yue Yau, Gavan P. McNally
{"title":"Rescorla-Wagner模型,预测误差和恐惧学习","authors":"Joanna Oi-Yue Yau,&nbsp;Gavan P. McNally","doi":"10.1016/j.nlm.2023.107799","DOIUrl":null,"url":null,"abstract":"<div><p>The Rescorla-Wagner model remains one of the most important and influential theoretical accounts of the conditions under which Pavlovian learning occurs. Moreover, the experimental approaches that inspired the model continue to provide powerful behavioral tools to advance mechanistic understanding of how we and other animals learn to fear and learn to reduce fear. Here we consider key features of the Rescorla-Wagner model as applied to study of fear learning. We review evidence for key insights of the model. First, learning to fear and learning to reduce fear are governed by a common, signed prediction error. Second, this error drives variations in effectiveness of the shock US that are causal to whether and how much fear is learned or lost during a conditioning trial. We also consider behavioral and neural findings inconsistent with the model and which will be essential to understand and advance understanding of fear learning.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Rescorla-Wagner model, prediction error, and fear learning\",\"authors\":\"Joanna Oi-Yue Yau,&nbsp;Gavan P. McNally\",\"doi\":\"10.1016/j.nlm.2023.107799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Rescorla-Wagner model remains one of the most important and influential theoretical accounts of the conditions under which Pavlovian learning occurs. Moreover, the experimental approaches that inspired the model continue to provide powerful behavioral tools to advance mechanistic understanding of how we and other animals learn to fear and learn to reduce fear. Here we consider key features of the Rescorla-Wagner model as applied to study of fear learning. We review evidence for key insights of the model. First, learning to fear and learning to reduce fear are governed by a common, signed prediction error. Second, this error drives variations in effectiveness of the shock US that are causal to whether and how much fear is learned or lost during a conditioning trial. We also consider behavioral and neural findings inconsistent with the model and which will be essential to understand and advance understanding of fear learning.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1074742723000801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1074742723000801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

Rescorla-Wagner模型仍然是巴甫洛夫学习发生条件的最重要和最有影响力的理论解释之一。此外,启发该模型的实验方法继续提供强大的行为工具,以促进对我们和其他动物如何学会恐惧和学会减少恐惧的机制理解。在这里,我们考虑Rescorla-Wagner模型在恐惧学习研究中的关键特征。我们回顾了该模型的关键见解的证据。首先,学会恐惧和学会减少恐惧是由一个共同的、有标志的预测错误决定的。其次,这种错误导致了休克效应的变化,而这些变化与在条件反射试验中是否学会恐惧以及失去恐惧的程度有关。我们还考虑了与模型不一致的行为和神经发现,这些发现对于理解和促进对恐惧学习的理解至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Rescorla-Wagner model, prediction error, and fear learning

The Rescorla-Wagner model remains one of the most important and influential theoretical accounts of the conditions under which Pavlovian learning occurs. Moreover, the experimental approaches that inspired the model continue to provide powerful behavioral tools to advance mechanistic understanding of how we and other animals learn to fear and learn to reduce fear. Here we consider key features of the Rescorla-Wagner model as applied to study of fear learning. We review evidence for key insights of the model. First, learning to fear and learning to reduce fear are governed by a common, signed prediction error. Second, this error drives variations in effectiveness of the shock US that are causal to whether and how much fear is learned or lost during a conditioning trial. We also consider behavioral and neural findings inconsistent with the model and which will be essential to understand and advance understanding of fear learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信