Yu Fu , Xin Bian , Rong Zou , Rongbo Jin , Xiaochang Leng , Feng Fan , Sen Wei , Xuan Cui , Jianping Xiang , Sheng Guan
{"title":"分流装置对胎儿后交通动脉瘤的血流动力学改变:使用 CFD 进行模拟研究,比较超越流线型、管道柔性和管桥装置","authors":"Yu Fu , Xin Bian , Rong Zou , Rongbo Jin , Xiaochang Leng , Feng Fan , Sen Wei , Xuan Cui , Jianping Xiang , Sheng Guan","doi":"10.1016/j.neurad.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Traditional flow diverters (FDs) for treating aneurysms at the fetal posterior communicating artery<span> are unsatisfactory. Surpass Streamline is a novel FD with different mesh characteristics; however, the outcomes for such aneurysms remain unclear. This study aimed to compare hemodynamic alterations induced by Surpass Streamline, Pipeline Flex, and Tubridge devices and explore possible strategies for aneurysms at the fetal posterior communicating artery.</span></p></div><div><h3>Methods</h3><p>Two simulated aneurysms (Case 1, Case 2) were constructed from digital subtraction angiography (DSA). The three FDs were virtually deployed, and hemodynamic analysis based on computational fluid dynamics was performed. Hemodynamic parameters, including the sac-averaged velocity magnitude (Velocity), high-flow volume (HFV), and wall shear stress (WSS), were compared between each FD and the untreated model (control). Surpass Streamline was performed in real life for two aneurysms and the clinical outcomes were collected for analysis.</p></div><div><h3>Results</h3><p>Compared to the control, the Surpass resulted in the most significant reduction in flow. In Case 1, the Velocity, HFV, and WSS were reduced by 51.6%, 78.1%, and 64.3%, respectively. In Case 2, the Velocity, HFV, and WSS were reduced by 48.0%, 81.1%, and 65.3%, respectively. Tubridge showed slightly larger changes in hemodynamic parameters than Pipeline. In addition, our analysis suggested that metal coverage was correlated with the WSS, Velocity, and HFV. The postoperative DSA showed that the aneurysm was nearly occluded in Case 1 and decreased in Case 2.</p></div><div><h3>Conclusion</h3><p>Compared to that with the Pipeline and Tubridge, the Surpass resulted in the greatest reduction in hemodynamic parameters and might be effective for aneurysms at the fetal posterior communicating artery. Virtual FD deployment and computational fluid dynamics analysis may be used to predict the treatment outcomes.</p></div>","PeriodicalId":50115,"journal":{"name":"Journal of Neuroradiology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hemodynamic alterations of flow diverters on aneurysms at the fetal posterior communicating artery: A simulation study using CFD to compare the surpass streamline, pipeline flex, and tubridge devices\",\"authors\":\"Yu Fu , Xin Bian , Rong Zou , Rongbo Jin , Xiaochang Leng , Feng Fan , Sen Wei , Xuan Cui , Jianping Xiang , Sheng Guan\",\"doi\":\"10.1016/j.neurad.2023.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>Traditional flow diverters (FDs) for treating aneurysms at the fetal posterior communicating artery<span> are unsatisfactory. Surpass Streamline is a novel FD with different mesh characteristics; however, the outcomes for such aneurysms remain unclear. This study aimed to compare hemodynamic alterations induced by Surpass Streamline, Pipeline Flex, and Tubridge devices and explore possible strategies for aneurysms at the fetal posterior communicating artery.</span></p></div><div><h3>Methods</h3><p>Two simulated aneurysms (Case 1, Case 2) were constructed from digital subtraction angiography (DSA). The three FDs were virtually deployed, and hemodynamic analysis based on computational fluid dynamics was performed. Hemodynamic parameters, including the sac-averaged velocity magnitude (Velocity), high-flow volume (HFV), and wall shear stress (WSS), were compared between each FD and the untreated model (control). Surpass Streamline was performed in real life for two aneurysms and the clinical outcomes were collected for analysis.</p></div><div><h3>Results</h3><p>Compared to the control, the Surpass resulted in the most significant reduction in flow. In Case 1, the Velocity, HFV, and WSS were reduced by 51.6%, 78.1%, and 64.3%, respectively. In Case 2, the Velocity, HFV, and WSS were reduced by 48.0%, 81.1%, and 65.3%, respectively. Tubridge showed slightly larger changes in hemodynamic parameters than Pipeline. In addition, our analysis suggested that metal coverage was correlated with the WSS, Velocity, and HFV. The postoperative DSA showed that the aneurysm was nearly occluded in Case 1 and decreased in Case 2.</p></div><div><h3>Conclusion</h3><p>Compared to that with the Pipeline and Tubridge, the Surpass resulted in the greatest reduction in hemodynamic parameters and might be effective for aneurysms at the fetal posterior communicating artery. Virtual FD deployment and computational fluid dynamics analysis may be used to predict the treatment outcomes.</p></div>\",\"PeriodicalId\":50115,\"journal\":{\"name\":\"Journal of Neuroradiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroradiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0150986123002213\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0150986123002213","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Hemodynamic alterations of flow diverters on aneurysms at the fetal posterior communicating artery: A simulation study using CFD to compare the surpass streamline, pipeline flex, and tubridge devices
Purpose
Traditional flow diverters (FDs) for treating aneurysms at the fetal posterior communicating artery are unsatisfactory. Surpass Streamline is a novel FD with different mesh characteristics; however, the outcomes for such aneurysms remain unclear. This study aimed to compare hemodynamic alterations induced by Surpass Streamline, Pipeline Flex, and Tubridge devices and explore possible strategies for aneurysms at the fetal posterior communicating artery.
Methods
Two simulated aneurysms (Case 1, Case 2) were constructed from digital subtraction angiography (DSA). The three FDs were virtually deployed, and hemodynamic analysis based on computational fluid dynamics was performed. Hemodynamic parameters, including the sac-averaged velocity magnitude (Velocity), high-flow volume (HFV), and wall shear stress (WSS), were compared between each FD and the untreated model (control). Surpass Streamline was performed in real life for two aneurysms and the clinical outcomes were collected for analysis.
Results
Compared to the control, the Surpass resulted in the most significant reduction in flow. In Case 1, the Velocity, HFV, and WSS were reduced by 51.6%, 78.1%, and 64.3%, respectively. In Case 2, the Velocity, HFV, and WSS were reduced by 48.0%, 81.1%, and 65.3%, respectively. Tubridge showed slightly larger changes in hemodynamic parameters than Pipeline. In addition, our analysis suggested that metal coverage was correlated with the WSS, Velocity, and HFV. The postoperative DSA showed that the aneurysm was nearly occluded in Case 1 and decreased in Case 2.
Conclusion
Compared to that with the Pipeline and Tubridge, the Surpass resulted in the greatest reduction in hemodynamic parameters and might be effective for aneurysms at the fetal posterior communicating artery. Virtual FD deployment and computational fluid dynamics analysis may be used to predict the treatment outcomes.
期刊介绍:
The Journal of Neuroradiology is a peer-reviewed journal, publishing worldwide clinical and basic research in the field of diagnostic and Interventional neuroradiology, translational and molecular neuroimaging, and artificial intelligence in neuroradiology.
The Journal of Neuroradiology considers for publication articles, reviews, technical notes and letters to the editors (correspondence section), provided that the methodology and scientific content are of high quality, and that the results will have substantial clinical impact and/or physiological importance.