Ruzanna Hayrapetyan , Théo Lacour , Annette Luce , Francis Finot , Marie-Christine Chagnon , Isabelle Séverin
{"title":"细胞转化试验评估纳米颗粒潜在的致癌特性","authors":"Ruzanna Hayrapetyan , Théo Lacour , Annette Luce , Francis Finot , Marie-Christine Chagnon , Isabelle Séverin","doi":"10.1016/j.mrrev.2023.108455","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Nanoparticles (NPs) are present in many daily life products with particular physical-chemical properties (size, density, porosity, geometry …) giving very interesting technological properties. Their use is continuously growing and NPs represent a new challenge in terms of risk assessment, consumers being multi-exposed. Toxic effects have already been identified such as </span>oxidative stress<span>, genotoxicity, inflammatory effects, and immune reactions, some of which are leading to carcinogenesis. Cancer is a complex phenomenon implying multiple modes of action and key events, and prevention strategies in cancer include a proper assessment of the properties of NPs. Therefore, introduction of new agents like NPs into the market creates fresh regulatory challenges for an adequate safety evaluation and requires new tools. The Cell Transformation Assay (CTA) is an </span></span><em>in vitro</em> test able of highlighting key events of characteristic phases in the cancer process, initiation and promotion. This review presents the development of this test and its use with NPs. The article underlines also the critical issues to address for assessing NPs carcinogenic properties and approaches for improving its relevance.</p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"791 ","pages":"Article 108455"},"PeriodicalIF":6.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cell transformation assay to assess potential carcinogenic properties of nanoparticles\",\"authors\":\"Ruzanna Hayrapetyan , Théo Lacour , Annette Luce , Francis Finot , Marie-Christine Chagnon , Isabelle Séverin\",\"doi\":\"10.1016/j.mrrev.2023.108455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Nanoparticles (NPs) are present in many daily life products with particular physical-chemical properties (size, density, porosity, geometry …) giving very interesting technological properties. Their use is continuously growing and NPs represent a new challenge in terms of risk assessment, consumers being multi-exposed. Toxic effects have already been identified such as </span>oxidative stress<span>, genotoxicity, inflammatory effects, and immune reactions, some of which are leading to carcinogenesis. Cancer is a complex phenomenon implying multiple modes of action and key events, and prevention strategies in cancer include a proper assessment of the properties of NPs. Therefore, introduction of new agents like NPs into the market creates fresh regulatory challenges for an adequate safety evaluation and requires new tools. The Cell Transformation Assay (CTA) is an </span></span><em>in vitro</em> test able of highlighting key events of characteristic phases in the cancer process, initiation and promotion. This review presents the development of this test and its use with NPs. The article underlines also the critical issues to address for assessing NPs carcinogenic properties and approaches for improving its relevance.</p></div>\",\"PeriodicalId\":49789,\"journal\":{\"name\":\"Mutation Research-Reviews in Mutation Research\",\"volume\":\"791 \",\"pages\":\"Article 108455\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Reviews in Mutation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383574223000030\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Reviews in Mutation Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383574223000030","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The cell transformation assay to assess potential carcinogenic properties of nanoparticles
Nanoparticles (NPs) are present in many daily life products with particular physical-chemical properties (size, density, porosity, geometry …) giving very interesting technological properties. Their use is continuously growing and NPs represent a new challenge in terms of risk assessment, consumers being multi-exposed. Toxic effects have already been identified such as oxidative stress, genotoxicity, inflammatory effects, and immune reactions, some of which are leading to carcinogenesis. Cancer is a complex phenomenon implying multiple modes of action and key events, and prevention strategies in cancer include a proper assessment of the properties of NPs. Therefore, introduction of new agents like NPs into the market creates fresh regulatory challenges for an adequate safety evaluation and requires new tools. The Cell Transformation Assay (CTA) is an in vitro test able of highlighting key events of characteristic phases in the cancer process, initiation and promotion. This review presents the development of this test and its use with NPs. The article underlines also the critical issues to address for assessing NPs carcinogenic properties and approaches for improving its relevance.
期刊介绍:
The subject areas of Reviews in Mutation Research encompass the entire spectrum of the science of mutation research and its applications, with particular emphasis on the relationship between mutation and disease. Thus this section will cover advances in human genome research (including evolving technologies for mutation detection and functional genomics) with applications in clinical genetics, gene therapy and health risk assessment for environmental agents of concern.