{"title":"一种常见的诱导分子增强了单核谢瓦氏菌MR-1对糖的利用。","authors":"Megan C Gruenberg, Michaela A TerAvest","doi":"10.1093/jimb/kuad018","DOIUrl":null,"url":null,"abstract":"<p><p>Shewanella oneidensis MR-1 is an electroactive bacterium that is a promising host for bioelectrochemical technologies, which makes it a common target for genetic engineering, including gene deletions and expression of heterologous pathways. Expression of heterologous genes and gene knockdown via CRISPRi in S. oneidensis are both frequently induced by β-D-1-thiogalactopyranoside (IPTG), a commonly used inducer molecule across many model organisms. Here, we report and characterize an unexpected phenotype; IPTG enhances the growth of wild-type S. oneidensis MR-1 on the sugar substrate N-acetylglucosamine (NAG). IPTG improves the carrying capacity of S. oneidensis growing on NAG while the growth rate remains similar to cultures without the inducer. Extracellular acetate accumulates faster and to a higher concentration in cultures without IPTG than those with it. IPTG appears to improve acetate metabolism, which combats the negative effect that acetate accumulation has on the growth of S. oneidensis with NAG. We recommend using extensive experimental controls and careful data interpretation when using both NAG and IPTG in S. oneidensis cultures.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10549210/pdf/","citationCount":"0","resultStr":"{\"title\":\"A common inducer molecule enhances sugar utilization by Shewanella oneidensis MR-1.\",\"authors\":\"Megan C Gruenberg, Michaela A TerAvest\",\"doi\":\"10.1093/jimb/kuad018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Shewanella oneidensis MR-1 is an electroactive bacterium that is a promising host for bioelectrochemical technologies, which makes it a common target for genetic engineering, including gene deletions and expression of heterologous pathways. Expression of heterologous genes and gene knockdown via CRISPRi in S. oneidensis are both frequently induced by β-D-1-thiogalactopyranoside (IPTG), a commonly used inducer molecule across many model organisms. Here, we report and characterize an unexpected phenotype; IPTG enhances the growth of wild-type S. oneidensis MR-1 on the sugar substrate N-acetylglucosamine (NAG). IPTG improves the carrying capacity of S. oneidensis growing on NAG while the growth rate remains similar to cultures without the inducer. Extracellular acetate accumulates faster and to a higher concentration in cultures without IPTG than those with it. IPTG appears to improve acetate metabolism, which combats the negative effect that acetate accumulation has on the growth of S. oneidensis with NAG. We recommend using extensive experimental controls and careful data interpretation when using both NAG and IPTG in S. oneidensis cultures.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10549210/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuad018\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuad018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A common inducer molecule enhances sugar utilization by Shewanella oneidensis MR-1.
Shewanella oneidensis MR-1 is an electroactive bacterium that is a promising host for bioelectrochemical technologies, which makes it a common target for genetic engineering, including gene deletions and expression of heterologous pathways. Expression of heterologous genes and gene knockdown via CRISPRi in S. oneidensis are both frequently induced by β-D-1-thiogalactopyranoside (IPTG), a commonly used inducer molecule across many model organisms. Here, we report and characterize an unexpected phenotype; IPTG enhances the growth of wild-type S. oneidensis MR-1 on the sugar substrate N-acetylglucosamine (NAG). IPTG improves the carrying capacity of S. oneidensis growing on NAG while the growth rate remains similar to cultures without the inducer. Extracellular acetate accumulates faster and to a higher concentration in cultures without IPTG than those with it. IPTG appears to improve acetate metabolism, which combats the negative effect that acetate accumulation has on the growth of S. oneidensis with NAG. We recommend using extensive experimental controls and careful data interpretation when using both NAG and IPTG in S. oneidensis cultures.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology