{"title":"镍钛器械对磨牙收缩根管腔的顶端挤压碎片、管内运输和成形能力。","authors":"Qinqin Zhang, Jingyi Gu, Jiadi Shen, Ming Ma, Ying Lv, Xin Wei","doi":"10.2334/josnusd.23-0050","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Apically extruded debris, canal transportation and shaping ability were compared between contracted endodontic cavities (CECs) and traditional endodontic cavities (TECs) after instrumentation with XP-endo Shaper (XPS), ProTaper Gold (PTG), ProTaper for hand-use (HPT) and Hero Shaper.</p><p><strong>Methods: </strong>The CECs or TECs groups were sub-divided into 24 groups according to root canal morphology and nickel-titanium (Ni-Ti) instruments. The weight of apically extruded debris was calculated using the Myers and Montgomery model. Pre- and postoperative images of teeth were scanned using micro-CT and the three-dimensional models were constructed and compared.</p><p><strong>Results: </strong>Under CECs or TECs, XPS and PTG produced less apical debris and formed less canal transportation than HPT and Hero Shaper (P < 0.05). XPS group under CECs extruded less apical debris than that under TCEs for round canals with curvature of 20°-35° (P < 0.05). The centering ratios of four tested instruments were higher under TECs than those under CECs (P < 0.05). The HPT and Hero Shaper had more transportation under CECs than that under TCEs (P < 0.05). No statistical difference was found regarding shaping ability among all the groups.</p><p><strong>Conclusion: </strong>Under CECs, XPS preserves the original root canal anatomy, meanwhile it produces less apical debris than the other instruments.</p>","PeriodicalId":16646,"journal":{"name":"Journal of oral science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Apically extruded debris, canal transportation, and shaping ability of nickel-titanium instruments on contracted endodontic cavities in molar teeth.\",\"authors\":\"Qinqin Zhang, Jingyi Gu, Jiadi Shen, Ming Ma, Ying Lv, Xin Wei\",\"doi\":\"10.2334/josnusd.23-0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Apically extruded debris, canal transportation and shaping ability were compared between contracted endodontic cavities (CECs) and traditional endodontic cavities (TECs) after instrumentation with XP-endo Shaper (XPS), ProTaper Gold (PTG), ProTaper for hand-use (HPT) and Hero Shaper.</p><p><strong>Methods: </strong>The CECs or TECs groups were sub-divided into 24 groups according to root canal morphology and nickel-titanium (Ni-Ti) instruments. The weight of apically extruded debris was calculated using the Myers and Montgomery model. Pre- and postoperative images of teeth were scanned using micro-CT and the three-dimensional models were constructed and compared.</p><p><strong>Results: </strong>Under CECs or TECs, XPS and PTG produced less apical debris and formed less canal transportation than HPT and Hero Shaper (P < 0.05). XPS group under CECs extruded less apical debris than that under TCEs for round canals with curvature of 20°-35° (P < 0.05). The centering ratios of four tested instruments were higher under TECs than those under CECs (P < 0.05). The HPT and Hero Shaper had more transportation under CECs than that under TCEs (P < 0.05). No statistical difference was found regarding shaping ability among all the groups.</p><p><strong>Conclusion: </strong>Under CECs, XPS preserves the original root canal anatomy, meanwhile it produces less apical debris than the other instruments.</p>\",\"PeriodicalId\":16646,\"journal\":{\"name\":\"Journal of oral science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of oral science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2334/josnusd.23-0050\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oral science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2334/josnusd.23-0050","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Apically extruded debris, canal transportation, and shaping ability of nickel-titanium instruments on contracted endodontic cavities in molar teeth.
Purpose: Apically extruded debris, canal transportation and shaping ability were compared between contracted endodontic cavities (CECs) and traditional endodontic cavities (TECs) after instrumentation with XP-endo Shaper (XPS), ProTaper Gold (PTG), ProTaper for hand-use (HPT) and Hero Shaper.
Methods: The CECs or TECs groups were sub-divided into 24 groups according to root canal morphology and nickel-titanium (Ni-Ti) instruments. The weight of apically extruded debris was calculated using the Myers and Montgomery model. Pre- and postoperative images of teeth were scanned using micro-CT and the three-dimensional models were constructed and compared.
Results: Under CECs or TECs, XPS and PTG produced less apical debris and formed less canal transportation than HPT and Hero Shaper (P < 0.05). XPS group under CECs extruded less apical debris than that under TCEs for round canals with curvature of 20°-35° (P < 0.05). The centering ratios of four tested instruments were higher under TECs than those under CECs (P < 0.05). The HPT and Hero Shaper had more transportation under CECs than that under TCEs (P < 0.05). No statistical difference was found regarding shaping ability among all the groups.
Conclusion: Under CECs, XPS preserves the original root canal anatomy, meanwhile it produces less apical debris than the other instruments.