人工智能工具的开发,用于基于侵入性多普勒的冠状动脉微血管评估。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2023-05-03 eCollection Date: 2023-08-01 DOI:10.1093/ehjdh/ztad030
Henry Seligman, Sapna B Patel, Anissa Alloula, James P Howard, Christopher M Cook, Yousif Ahmad, Guus A de Waard, Mauro Echavarría Pinto, Tim P van de Hoef, Haseeb Rahman, Mihir A Kelshiker, Christopher A Rajkumar, Michael Foley, Alexandra N Nowbar, Samay Mehta, Mathieu Toulemonde, Meng-Xing Tang, Rasha Al-Lamee, Sayan Sen, Graham Cole, Sukhjinder Nijjer, Javier Escaned, Niels Van Royen, Darrel P Francis, Matthew J Shun-Shin, Ricardo Petraco
{"title":"人工智能工具的开发,用于基于侵入性多普勒的冠状动脉微血管评估。","authors":"Henry Seligman, Sapna B Patel, Anissa Alloula, James P Howard, Christopher M Cook, Yousif Ahmad, Guus A de Waard, Mauro Echavarría Pinto, Tim P van de Hoef, Haseeb Rahman, Mihir A Kelshiker, Christopher A Rajkumar, Michael Foley, Alexandra N Nowbar, Samay Mehta, Mathieu Toulemonde, Meng-Xing Tang, Rasha Al-Lamee, Sayan Sen, Graham Cole, Sukhjinder Nijjer, Javier Escaned, Niels Van Royen, Darrel P Francis, Matthew J Shun-Shin, Ricardo Petraco","doi":"10.1093/ehjdh/ztad030","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Coronary flow reserve (CFR) assessment has proven clinical utility, but Doppler-based methods are sensitive to noise and operator bias, limiting their clinical applicability. The objective of the study is to expand the adoption of invasive Doppler CFR, through the development of artificial intelligence (AI) algorithms to automatically quantify coronary Doppler quality and track flow velocity.</p><p><strong>Methods and results: </strong>A neural network was trained on images extracted from coronary Doppler flow recordings to score signal quality and derive values for coronary flow velocity and CFR. The outputs were independently validated against expert consensus. Artificial intelligence successfully quantified Doppler signal quality, with high agreement with expert consensus (Spearman's rho: 0.94), and within individual experts. Artificial intelligence automatically tracked flow velocity with superior numerical agreement against experts, when compared with the current console algorithm [AI flow vs. expert flow bias -1.68 cm/s, 95% confidence interval (CI) -2.13 to -1.23 cm/s, <i>P</i> < 0.001 with limits of agreement (LOA) -4.03 to 0.68 cm/s; console flow vs. expert flow bias -2.63 cm/s, 95% CI -3.74 to -1.52, <i>P</i> < 0.001, 95% LOA -8.45 to -3.19 cm/s]. Artificial intelligence yielded more precise CFR values [median absolute difference (MAD) against expert CFR: 4.0% for AI and 7.4% for console]. Artificial intelligence tracked lower-quality Doppler signals with lower variability (MAD against expert CFR 8.3% for AI and 16.7% for console).</p><p><strong>Conclusion: </strong>An AI-based system, trained by experts and independently validated, could assign a quality score to Doppler traces and derive coronary flow velocity and CFR. By making Doppler CFR more automated, precise, and operator-independent, AI could expand the clinical applicability of coronary microvascular assessment.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/09/27/ztad030.PMC10393887.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of artificial intelligence tools for invasive Doppler-based coronary microvascular assessment.\",\"authors\":\"Henry Seligman, Sapna B Patel, Anissa Alloula, James P Howard, Christopher M Cook, Yousif Ahmad, Guus A de Waard, Mauro Echavarría Pinto, Tim P van de Hoef, Haseeb Rahman, Mihir A Kelshiker, Christopher A Rajkumar, Michael Foley, Alexandra N Nowbar, Samay Mehta, Mathieu Toulemonde, Meng-Xing Tang, Rasha Al-Lamee, Sayan Sen, Graham Cole, Sukhjinder Nijjer, Javier Escaned, Niels Van Royen, Darrel P Francis, Matthew J Shun-Shin, Ricardo Petraco\",\"doi\":\"10.1093/ehjdh/ztad030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Coronary flow reserve (CFR) assessment has proven clinical utility, but Doppler-based methods are sensitive to noise and operator bias, limiting their clinical applicability. The objective of the study is to expand the adoption of invasive Doppler CFR, through the development of artificial intelligence (AI) algorithms to automatically quantify coronary Doppler quality and track flow velocity.</p><p><strong>Methods and results: </strong>A neural network was trained on images extracted from coronary Doppler flow recordings to score signal quality and derive values for coronary flow velocity and CFR. The outputs were independently validated against expert consensus. Artificial intelligence successfully quantified Doppler signal quality, with high agreement with expert consensus (Spearman's rho: 0.94), and within individual experts. Artificial intelligence automatically tracked flow velocity with superior numerical agreement against experts, when compared with the current console algorithm [AI flow vs. expert flow bias -1.68 cm/s, 95% confidence interval (CI) -2.13 to -1.23 cm/s, <i>P</i> < 0.001 with limits of agreement (LOA) -4.03 to 0.68 cm/s; console flow vs. expert flow bias -2.63 cm/s, 95% CI -3.74 to -1.52, <i>P</i> < 0.001, 95% LOA -8.45 to -3.19 cm/s]. Artificial intelligence yielded more precise CFR values [median absolute difference (MAD) against expert CFR: 4.0% for AI and 7.4% for console]. Artificial intelligence tracked lower-quality Doppler signals with lower variability (MAD against expert CFR 8.3% for AI and 16.7% for console).</p><p><strong>Conclusion: </strong>An AI-based system, trained by experts and independently validated, could assign a quality score to Doppler traces and derive coronary flow velocity and CFR. By making Doppler CFR more automated, precise, and operator-independent, AI could expand the clinical applicability of coronary microvascular assessment.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/09/27/ztad030.PMC10393887.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztad030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztad030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:冠状动脉血流储备(CFR)评估已被证明具有临床实用性,但基于多普勒的方法对噪声和操作员偏差敏感,限制了其临床适用性。该研究的目的是通过开发人工智能(AI)算法来自动量化冠状动脉多普勒质量和跟踪血流速度,从而扩大有创多普勒CFR的采用范围。方法和结果:在从冠状动脉多普勒血流记录中提取的图像上训练神经网络,以对信号质量进行评分,并导出冠状动脉流速和CFR的值。根据专家一致意见对产出进行了独立验证。人工智能成功地量化了多普勒信号质量,与专家共识高度一致(Spearman的rho:0.94),并在个别专家中达成一致。人工智能自动跟踪流速,与专家相比具有卓越的数值一致性,与当前控制台算法相比[AI流量与专家流量偏差-1.68 cm/s,95%置信区间(CI)-2.13至-1.23 cm/s,P<0.001,一致性极限(LOA)-4.03至0.68 cm/s;控制台流量与专家流偏差-2.63 cm/s,95%CI-3.74至-1.52,P<0.00195%LOA-8.45至-3.19 cm/s]。人工智能产生了更精确的CFR值[与专家CFR的中位数绝对差(MAD):AI为4.0%,控制台为7.4%]。人工智能以较低的可变性跟踪质量较低的多普勒信号(人工智能的MAD与专家CFR的对比为8.3%,控制台的对比为16.7%)。结论:由专家训练并独立验证的基于人工智能的系统可以为多普勒描记指定质量分数,并推导出冠状动脉流速和CFR。通过使多普勒CFR更加自动化、精确和独立于操作员,AI可以扩大冠状动脉微血管评估的临床适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of artificial intelligence tools for invasive Doppler-based coronary microvascular assessment.

Development of artificial intelligence tools for invasive Doppler-based coronary microvascular assessment.

Development of artificial intelligence tools for invasive Doppler-based coronary microvascular assessment.

Development of artificial intelligence tools for invasive Doppler-based coronary microvascular assessment.

Aims: Coronary flow reserve (CFR) assessment has proven clinical utility, but Doppler-based methods are sensitive to noise and operator bias, limiting their clinical applicability. The objective of the study is to expand the adoption of invasive Doppler CFR, through the development of artificial intelligence (AI) algorithms to automatically quantify coronary Doppler quality and track flow velocity.

Methods and results: A neural network was trained on images extracted from coronary Doppler flow recordings to score signal quality and derive values for coronary flow velocity and CFR. The outputs were independently validated against expert consensus. Artificial intelligence successfully quantified Doppler signal quality, with high agreement with expert consensus (Spearman's rho: 0.94), and within individual experts. Artificial intelligence automatically tracked flow velocity with superior numerical agreement against experts, when compared with the current console algorithm [AI flow vs. expert flow bias -1.68 cm/s, 95% confidence interval (CI) -2.13 to -1.23 cm/s, P < 0.001 with limits of agreement (LOA) -4.03 to 0.68 cm/s; console flow vs. expert flow bias -2.63 cm/s, 95% CI -3.74 to -1.52, P < 0.001, 95% LOA -8.45 to -3.19 cm/s]. Artificial intelligence yielded more precise CFR values [median absolute difference (MAD) against expert CFR: 4.0% for AI and 7.4% for console]. Artificial intelligence tracked lower-quality Doppler signals with lower variability (MAD against expert CFR 8.3% for AI and 16.7% for console).

Conclusion: An AI-based system, trained by experts and independently validated, could assign a quality score to Doppler traces and derive coronary flow velocity and CFR. By making Doppler CFR more automated, precise, and operator-independent, AI could expand the clinical applicability of coronary microvascular assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信