辐射科学的机器智能:辐射研究学会第67届年会研讨会纪要。

IF 2.1 4区 医学 Q2 BIOLOGY
Lydia J Wilson, Frederico C Kiffer, Daniel C Berrios, Abigail Bryce-Atkinson, Sylvain V Costes, Olivier Gevaert, Bruno F E Matarèse, Jack Miller, Pritam Mukherjee, Kristen Peach, Paul N Schofield, Luke T Slater, Britta Langen
{"title":"辐射科学的机器智能:辐射研究学会第67届年会研讨会纪要。","authors":"Lydia J Wilson,&nbsp;Frederico C Kiffer,&nbsp;Daniel C Berrios,&nbsp;Abigail Bryce-Atkinson,&nbsp;Sylvain V Costes,&nbsp;Olivier Gevaert,&nbsp;Bruno F E Matarèse,&nbsp;Jack Miller,&nbsp;Pritam Mukherjee,&nbsp;Kristen Peach,&nbsp;Paul N Schofield,&nbsp;Luke T Slater,&nbsp;Britta Langen","doi":"10.1080/09553002.2023.2173823","DOIUrl":null,"url":null,"abstract":"<p><p>The era of high-throughput techniques created big data in the medical field and research disciplines. Machine intelligence (MI) approaches can overcome critical limitations on how those large-scale data sets are processed, analyzed, and interpreted. The 67<sup>th</sup> Annual Meeting of the Radiation Research Society featured a symposium on MI approaches to highlight recent advancements in the radiation sciences and their clinical applications. This article summarizes three of those presentations regarding recent developments for metadata processing and ontological formalization, data mining for radiation outcomes in pediatric oncology, and imaging in lung cancer.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 8","pages":"1291-1300"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine intelligence for radiation science: summary of the Radiation Research Society 67th annual meeting symposium.\",\"authors\":\"Lydia J Wilson,&nbsp;Frederico C Kiffer,&nbsp;Daniel C Berrios,&nbsp;Abigail Bryce-Atkinson,&nbsp;Sylvain V Costes,&nbsp;Olivier Gevaert,&nbsp;Bruno F E Matarèse,&nbsp;Jack Miller,&nbsp;Pritam Mukherjee,&nbsp;Kristen Peach,&nbsp;Paul N Schofield,&nbsp;Luke T Slater,&nbsp;Britta Langen\",\"doi\":\"10.1080/09553002.2023.2173823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The era of high-throughput techniques created big data in the medical field and research disciplines. Machine intelligence (MI) approaches can overcome critical limitations on how those large-scale data sets are processed, analyzed, and interpreted. The 67<sup>th</sup> Annual Meeting of the Radiation Research Society featured a symposium on MI approaches to highlight recent advancements in the radiation sciences and their clinical applications. This article summarizes three of those presentations regarding recent developments for metadata processing and ontological formalization, data mining for radiation outcomes in pediatric oncology, and imaging in lung cancer.</p>\",\"PeriodicalId\":14261,\"journal\":{\"name\":\"International Journal of Radiation Biology\",\"volume\":\"99 8\",\"pages\":\"1291-1300\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Radiation Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/09553002.2023.2173823\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09553002.2023.2173823","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高通量技术时代催生了医学领域和研究学科的大数据。机器智能(MI)方法可以克服如何处理、分析和解释这些大规模数据集的关键限制。第67届放射研究学会年会举办了一场关于心肌梗死方法的研讨会,以突出放射科学及其临床应用的最新进展。本文总结了其中三个关于元数据处理和本体论形式化、儿科肿瘤学放射结果数据挖掘和肺癌成像的最新进展的演讲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine intelligence for radiation science: summary of the Radiation Research Society 67th annual meeting symposium.

The era of high-throughput techniques created big data in the medical field and research disciplines. Machine intelligence (MI) approaches can overcome critical limitations on how those large-scale data sets are processed, analyzed, and interpreted. The 67th Annual Meeting of the Radiation Research Society featured a symposium on MI approaches to highlight recent advancements in the radiation sciences and their clinical applications. This article summarizes three of those presentations regarding recent developments for metadata processing and ontological formalization, data mining for radiation outcomes in pediatric oncology, and imaging in lung cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
11.50%
发文量
142
审稿时长
3 months
期刊介绍: The International Journal of Radiation Biology publishes original papers, reviews, current topic articles, technical notes/reports, and meeting reports on the effects of ionizing, UV and visible radiation, accelerated particles, electromagnetic fields, ultrasound, heat and related modalities. The focus is on the biological effects of such radiations: from radiation chemistry to the spectrum of responses of living organisms and underlying mechanisms, including genetic abnormalities, repair phenomena, cell death, dose modifying agents and tissue responses. Application of basic studies to medical uses of radiation extends the coverage to practical problems such as physical and chemical adjuvants which improve the effectiveness of radiation in cancer therapy. Assessment of the hazards of low doses of radiation is also considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信