冰岛空气微生物在模拟大气压力因素下的生存。

IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aurélien Daussin, Pauline Vannier, Émilien Mater, Tina Šantl-Temkiv, Charles Cockell, Viggó Þór Marteinsson
{"title":"冰岛空气微生物在模拟大气压力因素下的生存。","authors":"Aurélien Daussin,&nbsp;Pauline Vannier,&nbsp;Émilien Mater,&nbsp;Tina Šantl-Temkiv,&nbsp;Charles Cockell,&nbsp;Viggó Þór Marteinsson","doi":"10.1007/s00792-023-01302-6","DOIUrl":null,"url":null,"abstract":"<p><p>Surface microbes are aerosolized into the atmosphere by wind and events such as dust storms, wildland fires, and volcano eruptions. Only microbial cells that survive the various atmospheric stressors during their transportation will deposit and colonize new environments. These stressors include desiccation, oxidative stress, solar radiation, osmotic shock, and freeze-thaw cycles. In this paper, we specifically studied the survival of representative microbial model strains isolated from the atmosphere over pristine volcanic landscapes to understand their potential to successfully disperse to novel terrestrial environments. In line with previous studies, we found that the most stringent selection factors were the freeze-thaw and osmotic shock cycles and that the strains affiliated with Proteobacteria and Ascomycota were the best to survive simulated atmospheric stresses. Specifically, isolates belonging to Paracoccus marinus, Janthinobacterium rivuli, and Sarocladium kiliense exhibited the highest levels of resistance to atmospheric stress. However, the number of strains tested in our study was limited and caution should be taken when generalizing these findings.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"27 2","pages":"17"},"PeriodicalIF":2.6000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Survival of Icelandic airborne microbes towards simulated atmospheric stress factors.\",\"authors\":\"Aurélien Daussin,&nbsp;Pauline Vannier,&nbsp;Émilien Mater,&nbsp;Tina Šantl-Temkiv,&nbsp;Charles Cockell,&nbsp;Viggó Þór Marteinsson\",\"doi\":\"10.1007/s00792-023-01302-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surface microbes are aerosolized into the atmosphere by wind and events such as dust storms, wildland fires, and volcano eruptions. Only microbial cells that survive the various atmospheric stressors during their transportation will deposit and colonize new environments. These stressors include desiccation, oxidative stress, solar radiation, osmotic shock, and freeze-thaw cycles. In this paper, we specifically studied the survival of representative microbial model strains isolated from the atmosphere over pristine volcanic landscapes to understand their potential to successfully disperse to novel terrestrial environments. In line with previous studies, we found that the most stringent selection factors were the freeze-thaw and osmotic shock cycles and that the strains affiliated with Proteobacteria and Ascomycota were the best to survive simulated atmospheric stresses. Specifically, isolates belonging to Paracoccus marinus, Janthinobacterium rivuli, and Sarocladium kiliense exhibited the highest levels of resistance to atmospheric stress. However, the number of strains tested in our study was limited and caution should be taken when generalizing these findings.</p>\",\"PeriodicalId\":12302,\"journal\":{\"name\":\"Extremophiles\",\"volume\":\"27 2\",\"pages\":\"17\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extremophiles\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00792-023-01302-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremophiles","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-023-01302-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

地表微生物被风和沙尘暴、野火和火山爆发等事件雾化到大气中。只有在运输过程中经受住各种大气压力的微生物细胞才能沉积并在新的环境中定居。这些压力源包括干燥、氧化应激、太阳辐射、渗透冲击和冻融循环。在本文中,我们专门研究了从原始火山景观的大气中分离出来的具有代表性的微生物模型菌株的生存,以了解它们成功分散到新的陆地环境的潜力。与以往的研究一致,我们发现最严格的选择因素是冻融循环和渗透冲击循环,Proteobacteria和Ascomycota的菌株在模拟大气胁迫下的生存能力最好。具体来说,属于海洋副球菌、河流Janthinobacterium rivuli和kiliense Sarocladium的分离株对大气胁迫表现出最高的抗性。然而,在我们的研究中检测的菌株数量有限,在推广这些发现时应谨慎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Survival of Icelandic airborne microbes towards simulated atmospheric stress factors.

Survival of Icelandic airborne microbes towards simulated atmospheric stress factors.

Surface microbes are aerosolized into the atmosphere by wind and events such as dust storms, wildland fires, and volcano eruptions. Only microbial cells that survive the various atmospheric stressors during their transportation will deposit and colonize new environments. These stressors include desiccation, oxidative stress, solar radiation, osmotic shock, and freeze-thaw cycles. In this paper, we specifically studied the survival of representative microbial model strains isolated from the atmosphere over pristine volcanic landscapes to understand their potential to successfully disperse to novel terrestrial environments. In line with previous studies, we found that the most stringent selection factors were the freeze-thaw and osmotic shock cycles and that the strains affiliated with Proteobacteria and Ascomycota were the best to survive simulated atmospheric stresses. Specifically, isolates belonging to Paracoccus marinus, Janthinobacterium rivuli, and Sarocladium kiliense exhibited the highest levels of resistance to atmospheric stress. However, the number of strains tested in our study was limited and caution should be taken when generalizing these findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extremophiles
Extremophiles 生物-生化与分子生物学
CiteScore
6.80
自引率
6.90%
发文量
28
审稿时长
2 months
期刊介绍: Extremophiles features original research articles, reviews, and method papers on the biology, molecular biology, structure, function, and applications of microbial life at high or low temperature, pressure, acidity, alkalinity, salinity, or desiccation; or in the presence of organic solvents, heavy metals, normally toxic substances, or radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信