基于加权 GraphSAGE 的大数据访问控制情境感知方法。

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Big Data Pub Date : 2024-10-01 Epub Date: 2023-08-01 DOI:10.1089/big.2021.0473
Dibin Shan, Xuehui Du, Wenjuan Wang, Aodi Liu, Na Wang
{"title":"基于加权 GraphSAGE 的大数据访问控制情境感知方法。","authors":"Dibin Shan, Xuehui Du, Wenjuan Wang, Aodi Liu, Na Wang","doi":"10.1089/big.2021.0473","DOIUrl":null,"url":null,"abstract":"<p><p>Context information is the key element to realizing dynamic access control of big data. However, existing context-aware access control (CAAC) methods do not support automatic context awareness and cannot automatically model and reason about context relationships. To solve these problems, this article proposes a weighted GraphSAGE-based context-aware approach for big data access control. First, graph modeling is performed on the access record data set and transforms the access control context-awareness problem into a graph neural network (GNN) node learning problem. Then, a GNN model WGraphSAGE is proposed to achieve automatic context awareness and automatic generation of CAAC rules. Finally, weighted neighbor sampling and weighted aggregation algorithms are designed for the model to realize automatic modeling and reasoning of node relationships and relationship strengths simultaneously in the graph node learning process. The experiment results show that the proposed method has obvious advantages in context awareness and context relationship reasoning compared with similar GNN models. Meanwhile, it obtains better results in dynamic access control decisions than the existing CAAC models.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Weighted GraphSAGE-Based Context-Aware Approach for Big Data Access Control.\",\"authors\":\"Dibin Shan, Xuehui Du, Wenjuan Wang, Aodi Liu, Na Wang\",\"doi\":\"10.1089/big.2021.0473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Context information is the key element to realizing dynamic access control of big data. However, existing context-aware access control (CAAC) methods do not support automatic context awareness and cannot automatically model and reason about context relationships. To solve these problems, this article proposes a weighted GraphSAGE-based context-aware approach for big data access control. First, graph modeling is performed on the access record data set and transforms the access control context-awareness problem into a graph neural network (GNN) node learning problem. Then, a GNN model WGraphSAGE is proposed to achieve automatic context awareness and automatic generation of CAAC rules. Finally, weighted neighbor sampling and weighted aggregation algorithms are designed for the model to realize automatic modeling and reasoning of node relationships and relationship strengths simultaneously in the graph node learning process. The experiment results show that the proposed method has obvious advantages in context awareness and context relationship reasoning compared with similar GNN models. Meanwhile, it obtains better results in dynamic access control decisions than the existing CAAC models.</p>\",\"PeriodicalId\":51314,\"journal\":{\"name\":\"Big Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/big.2021.0473\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2021.0473","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

上下文信息是实现大数据动态访问控制的关键要素。然而,现有的上下文感知访问控制(CAAC)方法不支持自动上下文感知,无法自动建模和推理上下文关系。为了解决这些问题,本文提出了一种基于加权 GraphSAGE 的大数据访问控制上下文感知方法。首先,对访问记录数据集进行图建模,将访问控制上下文感知问题转化为图神经网络(GNN)节点学习问题。然后,提出了一个 GNN 模型 WGraphSAGE,以实现自动上下文感知和 CAAC 规则的自动生成。最后,为该模型设计了加权邻居采样和加权聚合算法,以实现图节点学习过程中节点关系和关系强度的自动建模和同时推理。实验结果表明,与同类 GNN 模型相比,本文提出的方法在上下文感知和上下文关系推理方面具有明显优势。同时,与现有的 CAAC 模型相比,它在动态访问控制决策方面取得了更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Weighted GraphSAGE-Based Context-Aware Approach for Big Data Access Control.

Context information is the key element to realizing dynamic access control of big data. However, existing context-aware access control (CAAC) methods do not support automatic context awareness and cannot automatically model and reason about context relationships. To solve these problems, this article proposes a weighted GraphSAGE-based context-aware approach for big data access control. First, graph modeling is performed on the access record data set and transforms the access control context-awareness problem into a graph neural network (GNN) node learning problem. Then, a GNN model WGraphSAGE is proposed to achieve automatic context awareness and automatic generation of CAAC rules. Finally, weighted neighbor sampling and weighted aggregation algorithms are designed for the model to realize automatic modeling and reasoning of node relationships and relationship strengths simultaneously in the graph node learning process. The experiment results show that the proposed method has obvious advantages in context awareness and context relationship reasoning compared with similar GNN models. Meanwhile, it obtains better results in dynamic access control decisions than the existing CAAC models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data
Big Data COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍: Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions. Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government. Big Data coverage includes: Big data industry standards, New technologies being developed specifically for big data, Data acquisition, cleaning, distribution, and best practices, Data protection, privacy, and policy, Business interests from research to product, The changing role of business intelligence, Visualization and design principles of big data infrastructures, Physical interfaces and robotics, Social networking advantages for Facebook, Twitter, Amazon, Google, etc, Opportunities around big data and how companies can harness it to their advantage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信