HOTAIRM1敲低可通过激活Nrf2/HO-1通路降低MPP+诱导的SH-SY5Y细胞氧化应激损伤。

IF 1.8 4区 医学 Q4 NEUROSCIENCES
Hui-Yu Dai, Ming-Xiu Chang, Ling Sun
{"title":"HOTAIRM1敲低可通过激活Nrf2/HO-1通路降低MPP+诱导的SH-SY5Y细胞氧化应激损伤。","authors":"Hui-Yu Dai,&nbsp;Ming-Xiu Chang,&nbsp;Ling Sun","doi":"10.1515/tnsci-2022-0296","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Parkinson's disease (PD) is the second most common neurodegenerative disease with complex pathogenesis. Although HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) is upregulated in PD, its exact role in HOTAIRM1 is seldom reported. The purpose of this study is to research the effect of HOTAIRM1 on 1-methyl-4-phenylpyridonium (MPP<sup>+</sup>)-induced cytotoxicity and oxidative stress in SH-SY5Y cells.</p><p><strong>Methods: </strong>SH-SY5Y cells were treated with MPP<sup>+</sup> at various concentrations or time points to induce SH-SY5Y cytotoxicity, so as to determine the optimal MPP<sup>+</sup> concentration and time point. HOTAIRM1 expression upon MPP<sup>+</sup> treatment was analyzed through qRT-PCR. Next, HOTAIRM1 was downregulated to observe the variance of SH-SY5Y cell viability, apoptosis, oxidative stress-related indexes, and protein levels of the Nrf2/HO-1 pathway. In addition, rescue experiments were carried out to assess the role of Nrf2 silencing in HOTAIRM1 knockdown on MPP<sup>+</sup>-induced oxidative stress in SH-SY5Y cells.</p><p><strong>Results: </strong>MPP<sup>+</sup> treatment-induced cytotoxicity and upregulated HOTAIRM1 expression in SH-SY5Y cells in a dose- and time-dependent manner. Mechanically, HOTAIRM1 knockdown enhanced cell viability, limited apoptosis, and oxidative stress, therefore protecting SH-SY5Y cells from MPP<sup>+</sup>-induced SH-SY5Y cytotoxicity. On the other hand, HOTAIRM1 knockdown activated the protein levels of Nrf2 and HO-1. Nrf2 silencing could counteract the neuroprotective effect of HOTAIRM1 knockdown on <i>in vitro</i> PD model.</p><p><strong>Conclusion: </strong>Our data demonstrated that HOTAIRM1 knockdown could inhibit apoptosis and oxidative stress and activated the Nrf2/HO-1 pathway, therefore exerting neuroprotective effect on the PD cell model.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388137/pdf/","citationCount":"0","resultStr":"{\"title\":\"HOTAIRM1 knockdown reduces MPP<sup>+</sup>-induced oxidative stress injury of SH-SY5Y cells by activating the Nrf2/HO-1 pathway.\",\"authors\":\"Hui-Yu Dai,&nbsp;Ming-Xiu Chang,&nbsp;Ling Sun\",\"doi\":\"10.1515/tnsci-2022-0296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Parkinson's disease (PD) is the second most common neurodegenerative disease with complex pathogenesis. Although HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) is upregulated in PD, its exact role in HOTAIRM1 is seldom reported. The purpose of this study is to research the effect of HOTAIRM1 on 1-methyl-4-phenylpyridonium (MPP<sup>+</sup>)-induced cytotoxicity and oxidative stress in SH-SY5Y cells.</p><p><strong>Methods: </strong>SH-SY5Y cells were treated with MPP<sup>+</sup> at various concentrations or time points to induce SH-SY5Y cytotoxicity, so as to determine the optimal MPP<sup>+</sup> concentration and time point. HOTAIRM1 expression upon MPP<sup>+</sup> treatment was analyzed through qRT-PCR. Next, HOTAIRM1 was downregulated to observe the variance of SH-SY5Y cell viability, apoptosis, oxidative stress-related indexes, and protein levels of the Nrf2/HO-1 pathway. In addition, rescue experiments were carried out to assess the role of Nrf2 silencing in HOTAIRM1 knockdown on MPP<sup>+</sup>-induced oxidative stress in SH-SY5Y cells.</p><p><strong>Results: </strong>MPP<sup>+</sup> treatment-induced cytotoxicity and upregulated HOTAIRM1 expression in SH-SY5Y cells in a dose- and time-dependent manner. Mechanically, HOTAIRM1 knockdown enhanced cell viability, limited apoptosis, and oxidative stress, therefore protecting SH-SY5Y cells from MPP<sup>+</sup>-induced SH-SY5Y cytotoxicity. On the other hand, HOTAIRM1 knockdown activated the protein levels of Nrf2 and HO-1. Nrf2 silencing could counteract the neuroprotective effect of HOTAIRM1 knockdown on <i>in vitro</i> PD model.</p><p><strong>Conclusion: </strong>Our data demonstrated that HOTAIRM1 knockdown could inhibit apoptosis and oxidative stress and activated the Nrf2/HO-1 pathway, therefore exerting neuroprotective effect on the PD cell model.</p>\",\"PeriodicalId\":23227,\"journal\":{\"name\":\"Translational Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388137/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/tnsci-2022-0296\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0296","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的:帕金森病(PD)是第二常见的神经退行性疾病,发病机制复杂。虽然HOXA转录反义RNA髓细胞特异性1 (HOTAIRM1)在PD中上调,但其在HOTAIRM1中的确切作用很少被报道。本研究旨在研究HOTAIRM1对1-甲基-4-苯基吡啶鎓(MPP+)诱导的SH-SY5Y细胞毒性和氧化应激的影响。方法:用不同浓度或时间点的MPP+作用SH-SY5Y细胞,诱导SH-SY5Y细胞毒性,确定最佳MPP+浓度和时间点。通过qRT-PCR分析HOTAIRM1在MPP+处理下的表达情况。下调HOTAIRM1,观察SH-SY5Y细胞活力、凋亡、氧化应激相关指标及Nrf2/HO-1通路蛋白水平的变化。此外,我们还开展了救援实验,以评估Nrf2沉默在HOTAIRM1敲低中对MPP+诱导的SH-SY5Y细胞氧化应激的作用。结果:MPP+处理诱导SH-SY5Y细胞毒性和HOTAIRM1表达上调,并呈剂量和时间依赖性。从机械上讲,HOTAIRM1敲低可增强细胞活力,限制细胞凋亡和氧化应激,从而保护SH-SY5Y细胞免受MPP+诱导的SH-SY5Y细胞毒性。另一方面,HOTAIRM1敲低激活了Nrf2和HO-1的蛋白水平。Nrf2沉默可抵消HOTAIRM1敲低对PD体外模型的神经保护作用。结论:我们的数据表明,HOTAIRM1敲低可以抑制细胞凋亡和氧化应激,激活Nrf2/HO-1通路,从而对PD细胞模型产生神经保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

HOTAIRM1 knockdown reduces MPP<sup>+</sup>-induced oxidative stress injury of SH-SY5Y cells by activating the Nrf2/HO-1 pathway.

HOTAIRM1 knockdown reduces MPP<sup>+</sup>-induced oxidative stress injury of SH-SY5Y cells by activating the Nrf2/HO-1 pathway.

HOTAIRM1 knockdown reduces MPP<sup>+</sup>-induced oxidative stress injury of SH-SY5Y cells by activating the Nrf2/HO-1 pathway.

HOTAIRM1 knockdown reduces MPP+-induced oxidative stress injury of SH-SY5Y cells by activating the Nrf2/HO-1 pathway.

Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease with complex pathogenesis. Although HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) is upregulated in PD, its exact role in HOTAIRM1 is seldom reported. The purpose of this study is to research the effect of HOTAIRM1 on 1-methyl-4-phenylpyridonium (MPP+)-induced cytotoxicity and oxidative stress in SH-SY5Y cells.

Methods: SH-SY5Y cells were treated with MPP+ at various concentrations or time points to induce SH-SY5Y cytotoxicity, so as to determine the optimal MPP+ concentration and time point. HOTAIRM1 expression upon MPP+ treatment was analyzed through qRT-PCR. Next, HOTAIRM1 was downregulated to observe the variance of SH-SY5Y cell viability, apoptosis, oxidative stress-related indexes, and protein levels of the Nrf2/HO-1 pathway. In addition, rescue experiments were carried out to assess the role of Nrf2 silencing in HOTAIRM1 knockdown on MPP+-induced oxidative stress in SH-SY5Y cells.

Results: MPP+ treatment-induced cytotoxicity and upregulated HOTAIRM1 expression in SH-SY5Y cells in a dose- and time-dependent manner. Mechanically, HOTAIRM1 knockdown enhanced cell viability, limited apoptosis, and oxidative stress, therefore protecting SH-SY5Y cells from MPP+-induced SH-SY5Y cytotoxicity. On the other hand, HOTAIRM1 knockdown activated the protein levels of Nrf2 and HO-1. Nrf2 silencing could counteract the neuroprotective effect of HOTAIRM1 knockdown on in vitro PD model.

Conclusion: Our data demonstrated that HOTAIRM1 knockdown could inhibit apoptosis and oxidative stress and activated the Nrf2/HO-1 pathway, therefore exerting neuroprotective effect on the PD cell model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
4.80%
发文量
45
审稿时长
>12 weeks
期刊介绍: Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信