{"title":"多中心跖骨溶解:独特骨骼表型的当代视角。","authors":"Nina S Ma, S Mumm, S Takahashi, M A Levine","doi":"10.1007/s11914-022-00762-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Multicentric carpotarsal osteolysis (MCTO) is an ultra-rare disorder characterized by osteolysis of the carpal and tarsal bones, subtle craniofacial deformities, and nephropathy. The molecular pathways underlying the pathophysiology are not well understood.</p><p><strong>Recent findings: </strong>MCTO is caused by heterozygous mutations in MAFB, which encodes the widely expressed transcription factor MafB. All MAFB mutations in patients with MCTO result in replacement of amino acids that cluster in a phosphorylation region of the MafB transactivation domain and account for a presumed gain-of-function for the variant protein. Since 2012, fewer than 60 patients with MCTO have been described with 20 missense mutations in MAFB. The clinical presentations are variable, and a genotype-phenotype correlation is lacking. Osteolysis, via excessive osteoclast activity, has been regarded as the primary mechanism, although anti-resorptive agents demonstrate little therapeutic benefit. This paper appraises current perspectives of MafB protein action, inflammation, and dysfunctional bone formation on the pathogenesis of the skeletal phenotype in MCTO. More research is needed to understand the pathogenesis of MCTO to develop rational therapies.</p>","PeriodicalId":11080,"journal":{"name":"Current Osteoporosis Reports","volume":"21 1","pages":"85-94"},"PeriodicalIF":4.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393442/pdf/nihms-1918785.pdf","citationCount":"2","resultStr":"{\"title\":\"Multicentric Carpotarsal Osteolysis: a Contemporary Perspective on the Unique Skeletal Phenotype.\",\"authors\":\"Nina S Ma, S Mumm, S Takahashi, M A Levine\",\"doi\":\"10.1007/s11914-022-00762-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Multicentric carpotarsal osteolysis (MCTO) is an ultra-rare disorder characterized by osteolysis of the carpal and tarsal bones, subtle craniofacial deformities, and nephropathy. The molecular pathways underlying the pathophysiology are not well understood.</p><p><strong>Recent findings: </strong>MCTO is caused by heterozygous mutations in MAFB, which encodes the widely expressed transcription factor MafB. All MAFB mutations in patients with MCTO result in replacement of amino acids that cluster in a phosphorylation region of the MafB transactivation domain and account for a presumed gain-of-function for the variant protein. Since 2012, fewer than 60 patients with MCTO have been described with 20 missense mutations in MAFB. The clinical presentations are variable, and a genotype-phenotype correlation is lacking. Osteolysis, via excessive osteoclast activity, has been regarded as the primary mechanism, although anti-resorptive agents demonstrate little therapeutic benefit. This paper appraises current perspectives of MafB protein action, inflammation, and dysfunctional bone formation on the pathogenesis of the skeletal phenotype in MCTO. More research is needed to understand the pathogenesis of MCTO to develop rational therapies.</p>\",\"PeriodicalId\":11080,\"journal\":{\"name\":\"Current Osteoporosis Reports\",\"volume\":\"21 1\",\"pages\":\"85-94\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393442/pdf/nihms-1918785.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Osteoporosis Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11914-022-00762-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Osteoporosis Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11914-022-00762-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Multicentric Carpotarsal Osteolysis: a Contemporary Perspective on the Unique Skeletal Phenotype.
Purpose of review: Multicentric carpotarsal osteolysis (MCTO) is an ultra-rare disorder characterized by osteolysis of the carpal and tarsal bones, subtle craniofacial deformities, and nephropathy. The molecular pathways underlying the pathophysiology are not well understood.
Recent findings: MCTO is caused by heterozygous mutations in MAFB, which encodes the widely expressed transcription factor MafB. All MAFB mutations in patients with MCTO result in replacement of amino acids that cluster in a phosphorylation region of the MafB transactivation domain and account for a presumed gain-of-function for the variant protein. Since 2012, fewer than 60 patients with MCTO have been described with 20 missense mutations in MAFB. The clinical presentations are variable, and a genotype-phenotype correlation is lacking. Osteolysis, via excessive osteoclast activity, has been regarded as the primary mechanism, although anti-resorptive agents demonstrate little therapeutic benefit. This paper appraises current perspectives of MafB protein action, inflammation, and dysfunctional bone formation on the pathogenesis of the skeletal phenotype in MCTO. More research is needed to understand the pathogenesis of MCTO to develop rational therapies.
期刊介绍:
This journal intends to provide clear, insightful, balanced contributions by international experts that review the most important, recently published clinical findings related to the diagnosis, treatment, management, and prevention of osteoporosis.
We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas, such as current and future therapeutics, epidemiology and pathophysiology, and evaluation and management. Section Editors, in turn, select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. An international Editorial Board reviews the annual table of contents, suggests articles of special interest to their country/region, and ensures that topics are current and include emerging research. Commentaries from well-known figures in the field are also provided.