栽培沙棘石杉内生细菌组成及多样性新认识。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wen-Jing Pan, Li-Yun Miao, Shi-Peng Fan, Pin-Wei Lv, Ai-Hua Lin, Hong Geng, Fa-Jun Song, Peng Zhang
{"title":"栽培沙棘石杉内生细菌组成及多样性新认识。","authors":"Wen-Jing Pan,&nbsp;Li-Yun Miao,&nbsp;Shi-Peng Fan,&nbsp;Pin-Wei Lv,&nbsp;Ai-Hua Lin,&nbsp;Hong Geng,&nbsp;Fa-Jun Song,&nbsp;Peng Zhang","doi":"10.1139/cjm-2022-0171","DOIUrl":null,"url":null,"abstract":"<p><p>Endophytic bacteria play crucial roles in the growth and bioactive compound synthesis of host plants. In this study, the composition and diversity of endophytic bacteria in the roots, stems, and leaves from 3-year-old artificially cultivated <i>Huperzia serrata</i> were investigated using Illumina HiSeq sequencing technology. Total effective reads were assigned to 936 operational taxonomic units (OTUs), belonging to 12 phyla and 289 genera. A total of 28, 3, and 2 OTUs were exclusive to the roots, stems, and leaves, respectively. The bacterial richness and diversity in the roots were significantly lower than those in the leaves and stems. The dominant genera with significant distribution differences among these plant tissue samples were <i>Burkholderia-Caballeronia-Paraburkholderia, Sphingomonas, Acidibacter, Bradyrhizobium, Bryobacter, Methylocella, Nocardioides, Acidothermus</i>, and <i>Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium</i>. Furthermore, the differences in the bacterial communities associated with these plant tissue samples were visualized using principal coordinate analysis and cluster pedigree diagrams. Linear discriminant analysis effect size explained statistically significant differences among the endophytic bacterial microbiota in these plant tissue samples. Overall, this study provides new insights into the diversity and distribution patterns of endophytic bacteria in the different tissues of <i>H. serrata</i>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New insights into the composition and diversity of endophytic bacteria in cultivated <i>Huperzia serrata</i>.\",\"authors\":\"Wen-Jing Pan,&nbsp;Li-Yun Miao,&nbsp;Shi-Peng Fan,&nbsp;Pin-Wei Lv,&nbsp;Ai-Hua Lin,&nbsp;Hong Geng,&nbsp;Fa-Jun Song,&nbsp;Peng Zhang\",\"doi\":\"10.1139/cjm-2022-0171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endophytic bacteria play crucial roles in the growth and bioactive compound synthesis of host plants. In this study, the composition and diversity of endophytic bacteria in the roots, stems, and leaves from 3-year-old artificially cultivated <i>Huperzia serrata</i> were investigated using Illumina HiSeq sequencing technology. Total effective reads were assigned to 936 operational taxonomic units (OTUs), belonging to 12 phyla and 289 genera. A total of 28, 3, and 2 OTUs were exclusive to the roots, stems, and leaves, respectively. The bacterial richness and diversity in the roots were significantly lower than those in the leaves and stems. The dominant genera with significant distribution differences among these plant tissue samples were <i>Burkholderia-Caballeronia-Paraburkholderia, Sphingomonas, Acidibacter, Bradyrhizobium, Bryobacter, Methylocella, Nocardioides, Acidothermus</i>, and <i>Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium</i>. Furthermore, the differences in the bacterial communities associated with these plant tissue samples were visualized using principal coordinate analysis and cluster pedigree diagrams. Linear discriminant analysis effect size explained statistically significant differences among the endophytic bacterial microbiota in these plant tissue samples. Overall, this study provides new insights into the diversity and distribution patterns of endophytic bacteria in the different tissues of <i>H. serrata</i>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjm-2022-0171\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2022-0171","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

内生细菌在寄主植物的生长和生物活性化合物合成中起着至关重要的作用。本研究采用Illumina HiSeq测序技术,对人工栽培3年生的胡珀齐亚(Huperzia serrata)根、茎、叶的内生细菌组成及多样性进行了研究。共获得936个操作分类单元(otu),隶属于12门289属。根、茎和叶分别有28个、3个和2个otu。根的细菌丰富度和多样性显著低于叶和茎。分布差异显著的优势属为burkholderia - cabalalleronia - paraburkholderia、鞘单胞菌、Acidibacter、Bradyrhizobium、Bryobacter、Methylocella、Nocardioides、Acidothermus和alloorhizobia - neorhizobia - pararhizobia - rhizobium。此外,利用主坐标分析和聚类谱系图可视化了与这些植物组织样品相关的细菌群落的差异。线性判别分析效应大小解释了这些植物组织样品中内生细菌微生物群的统计学差异。总体而言,本研究对锯齿木不同组织内生细菌的多样性和分布模式提供了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New insights into the composition and diversity of endophytic bacteria in cultivated Huperzia serrata.

Endophytic bacteria play crucial roles in the growth and bioactive compound synthesis of host plants. In this study, the composition and diversity of endophytic bacteria in the roots, stems, and leaves from 3-year-old artificially cultivated Huperzia serrata were investigated using Illumina HiSeq sequencing technology. Total effective reads were assigned to 936 operational taxonomic units (OTUs), belonging to 12 phyla and 289 genera. A total of 28, 3, and 2 OTUs were exclusive to the roots, stems, and leaves, respectively. The bacterial richness and diversity in the roots were significantly lower than those in the leaves and stems. The dominant genera with significant distribution differences among these plant tissue samples were Burkholderia-Caballeronia-Paraburkholderia, Sphingomonas, Acidibacter, Bradyrhizobium, Bryobacter, Methylocella, Nocardioides, Acidothermus, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium. Furthermore, the differences in the bacterial communities associated with these plant tissue samples were visualized using principal coordinate analysis and cluster pedigree diagrams. Linear discriminant analysis effect size explained statistically significant differences among the endophytic bacterial microbiota in these plant tissue samples. Overall, this study provides new insights into the diversity and distribution patterns of endophytic bacteria in the different tissues of H. serrata.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信