为什么不良结果路径需要 FAIR?

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Altex-Alternatives To Animal Experimentation Pub Date : 2024-01-09 Epub Date: 2023-08-01 DOI:10.14573/altex.2307131
Clemens Wittwehr, Laure-Alix Clerbaux, Stephen Edwards, Michelle Angrish, Holly Mortensen, Annamaria Carusi, Maciej Gromelski, Eftychia Lekka, Vassilis Virvilis, Marvin Martens, Luiz Olavo Bonino da Silva Santos, Penny Nymark
{"title":"为什么不良结果路径需要 FAIR?","authors":"Clemens Wittwehr, Laure-Alix Clerbaux, Stephen Edwards, Michelle Angrish, Holly Mortensen, Annamaria Carusi, Maciej Gromelski, Eftychia Lekka, Vassilis Virvilis, Marvin Martens, Luiz Olavo Bonino da Silva Santos, Penny Nymark","doi":"10.14573/altex.2307131","DOIUrl":null,"url":null,"abstract":"<p><p>Adverse outcome pathways (AOPs) provide evidence for demonstrating and assessing causality between measurable toxicological mechanisms and human or environmental adverse effects. AOPs have gained increasing attention over the past decade and are believed to provide the necessary steppingstone for more effective risk assessment of chemicals and materials and moving beyond the need for animal testing. However, as with all types of data and knowledge today, AOPs need to be reusable by machines, i.e., machine-actionable, in order to reach their full impact potential. Machine-actionability is supported by the FAIR principles, which guide findability, accessibility, interoperability, and reusability of data and knowledge. Here, we describe why AOPs need to be FAIR and touch on aspects such as the improved visibility and the increased trust that FAIRification of AOPs provides.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"50-56"},"PeriodicalIF":4.5000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177558/pdf/","citationCount":"0","resultStr":"{\"title\":\"Why adverse outcome pathways need to be FAIR.\",\"authors\":\"Clemens Wittwehr, Laure-Alix Clerbaux, Stephen Edwards, Michelle Angrish, Holly Mortensen, Annamaria Carusi, Maciej Gromelski, Eftychia Lekka, Vassilis Virvilis, Marvin Martens, Luiz Olavo Bonino da Silva Santos, Penny Nymark\",\"doi\":\"10.14573/altex.2307131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adverse outcome pathways (AOPs) provide evidence for demonstrating and assessing causality between measurable toxicological mechanisms and human or environmental adverse effects. AOPs have gained increasing attention over the past decade and are believed to provide the necessary steppingstone for more effective risk assessment of chemicals and materials and moving beyond the need for animal testing. However, as with all types of data and knowledge today, AOPs need to be reusable by machines, i.e., machine-actionable, in order to reach their full impact potential. Machine-actionability is supported by the FAIR principles, which guide findability, accessibility, interoperability, and reusability of data and knowledge. Here, we describe why AOPs need to be FAIR and touch on aspects such as the improved visibility and the increased trust that FAIRification of AOPs provides.</p>\",\"PeriodicalId\":51231,\"journal\":{\"name\":\"Altex-Alternatives To Animal Experimentation\",\"volume\":\" \",\"pages\":\"50-56\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177558/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Altex-Alternatives To Animal Experimentation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14573/altex.2307131\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Altex-Alternatives To Animal Experimentation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14573/altex.2307131","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

不良后果途径(AOPs)为证明和评估可测量的毒理学机制与人类或环境不良影响之间的因果关系提供了证据。过去十年来,AOPs 越来越受到人们的关注,并被认为是对化学品和材料进行更有效的风险评估以及超越动物试验需求的必要基础。然而,与当今所有类型的数据和知识一样,AOPs 也需要能够被机器重复使用,即机器可操作性,才能充分发挥其影响潜力。机器可操作性得到了 FAIR 原则的支持,该原则指导数据和知识的可查找性、可访问性、互操作性和可重用性。在此,我们将介绍为什么 AOPs 需要 FAIR,并涉及 AOPs 的 FAIR 化所带来的能见度提高和信任度增加等方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why adverse outcome pathways need to be FAIR.

Adverse outcome pathways (AOPs) provide evidence for demonstrating and assessing causality between measurable toxicological mechanisms and human or environmental adverse effects. AOPs have gained increasing attention over the past decade and are believed to provide the necessary steppingstone for more effective risk assessment of chemicals and materials and moving beyond the need for animal testing. However, as with all types of data and knowledge today, AOPs need to be reusable by machines, i.e., machine-actionable, in order to reach their full impact potential. Machine-actionability is supported by the FAIR principles, which guide findability, accessibility, interoperability, and reusability of data and knowledge. Here, we describe why AOPs need to be FAIR and touch on aspects such as the improved visibility and the increased trust that FAIRification of AOPs provides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Altex-Alternatives To Animal Experimentation
Altex-Alternatives To Animal Experimentation MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
7.70
自引率
8.90%
发文量
89
审稿时长
2 months
期刊介绍: ALTEX publishes original articles, short communications, reviews, as well as news and comments and meeting reports. Manuscripts submitted to ALTEX are evaluated by two expert reviewers. The evaluation takes into account the scientific merit of a manuscript and its contribution to animal welfare and the 3R principle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信