吲哚胺2,3-双加氧酶1和其他色氨酸和精氨酸分解代谢途径基因在登革热中的差异表达模式与临床严重程度相关-初步研究结果

IF 1.5 4区 医学 Q4 IMMUNOLOGY
Soumya Jose, Roshni Jerome, Ajai Krishnan, Ozhiparambhil AnilKumar Jagan, Dongmei Li, Veena Menon
{"title":"吲哚胺2,3-双加氧酶1和其他色氨酸和精氨酸分解代谢途径基因在登革热中的差异表达模式与临床严重程度相关-初步研究结果","authors":"Soumya Jose, Roshni Jerome, Ajai Krishnan, Ozhiparambhil AnilKumar Jagan, Dongmei Li, Veena Menon","doi":"10.1089/vim.2022.0160","DOIUrl":null,"url":null,"abstract":"The kynurenine pathway of tryptophan catabolism can modulate inflammatory responses inducing immunotolerance or immunosuppressive effects. Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in this pathway. Early aberrant inflammation is implicated in severe dengue, and herein we investigate and characterize the expression of IDO pathway genes in severe dengue patients. We use a SyBR green-based qPCR to evaluate the leukocyte expression levels of IDO1, IDO2, AhR, TGF-β, ARG1, IFNγ, and IFNα in a dengue patient cohort (n = 51). Twenty-two cases were identified as severe dengue using the WHO case classification (2009) criteria. Principal component analysis (PCA) was employed to examine the relationships of gene expression profiles with disease severity and laboratory markers of clinical severity. We find that two principal components describe most of the variance (65.3%) in the expression patterns of the cohort. Reduced expression of IDO1, TGF-β, and AhR, represented by low Component 2 scores, was significantly associated with disease severity, thrombocytopenia, and leukopenia. Higher expression levels of IDO2, IFNγ, and IFNα positively correlated with Component 1 scores, and were significantly associated with elevated ALT (p = 0.018) and AST (p = 0.017) enzymes. Our results suggest that profiling the baseline expression patterns of the IDO pathway genes may aid in the identification of dengue patients most at risk of severe disease.","PeriodicalId":23665,"journal":{"name":"Viral immunology","volume":"36 4","pages":"268-281"},"PeriodicalIF":1.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Expression Patterns of Indoleamine 2,3-Dioxygenase 1 and Other Tryptophan and Arginine Catabolic Pathway Genes in Dengue Correlate with Clinical Severity-Pilot Study Results.\",\"authors\":\"Soumya Jose, Roshni Jerome, Ajai Krishnan, Ozhiparambhil AnilKumar Jagan, Dongmei Li, Veena Menon\",\"doi\":\"10.1089/vim.2022.0160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The kynurenine pathway of tryptophan catabolism can modulate inflammatory responses inducing immunotolerance or immunosuppressive effects. Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in this pathway. Early aberrant inflammation is implicated in severe dengue, and herein we investigate and characterize the expression of IDO pathway genes in severe dengue patients. We use a SyBR green-based qPCR to evaluate the leukocyte expression levels of IDO1, IDO2, AhR, TGF-β, ARG1, IFNγ, and IFNα in a dengue patient cohort (n = 51). Twenty-two cases were identified as severe dengue using the WHO case classification (2009) criteria. Principal component analysis (PCA) was employed to examine the relationships of gene expression profiles with disease severity and laboratory markers of clinical severity. We find that two principal components describe most of the variance (65.3%) in the expression patterns of the cohort. Reduced expression of IDO1, TGF-β, and AhR, represented by low Component 2 scores, was significantly associated with disease severity, thrombocytopenia, and leukopenia. Higher expression levels of IDO2, IFNγ, and IFNα positively correlated with Component 1 scores, and were significantly associated with elevated ALT (p = 0.018) and AST (p = 0.017) enzymes. Our results suggest that profiling the baseline expression patterns of the IDO pathway genes may aid in the identification of dengue patients most at risk of severe disease.\",\"PeriodicalId\":23665,\"journal\":{\"name\":\"Viral immunology\",\"volume\":\"36 4\",\"pages\":\"268-281\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viral immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/vim.2022.0160\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viral immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vim.2022.0160","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

色氨酸分解代谢的犬尿氨酸途径可以调节炎症反应,诱导免疫耐受或免疫抑制作用。吲哚胺2,3-双加氧酶(IDO)是该途径中的限速酶。早期异常炎症与严重登革热有关,在此,我们研究并表征了IDO通路基因在严重登革热患者中的表达。我们使用基于SyBR绿色的qPCR来评估登革热患者队列(n = 51)中IDO1、IDO2、AhR、TGF-β、ARG1、IFNγ和IFNα的白细胞表达水平。根据世卫组织病例分类(2009年)标准,22例被确定为重症登革热。采用主成分分析(PCA)检查基因表达谱与疾病严重程度和临床严重程度实验室标志物的关系。我们发现两个主成分描述了队列中表达模式的大部分方差(65.3%)。IDO1、TGF-β和AhR的表达降低,以低组分2评分为代表,与疾病严重程度、血小板减少和白细胞减少显著相关。IDO2、IFNγ和IFNα的高表达水平与Component 1评分呈正相关,与ALT (p = 0.018)和AST (p = 0.017)的升高显著相关。我们的研究结果表明,分析IDO通路基因的基线表达模式可能有助于识别最危险的登革热患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential Expression Patterns of Indoleamine 2,3-Dioxygenase 1 and Other Tryptophan and Arginine Catabolic Pathway Genes in Dengue Correlate with Clinical Severity-Pilot Study Results.
The kynurenine pathway of tryptophan catabolism can modulate inflammatory responses inducing immunotolerance or immunosuppressive effects. Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in this pathway. Early aberrant inflammation is implicated in severe dengue, and herein we investigate and characterize the expression of IDO pathway genes in severe dengue patients. We use a SyBR green-based qPCR to evaluate the leukocyte expression levels of IDO1, IDO2, AhR, TGF-β, ARG1, IFNγ, and IFNα in a dengue patient cohort (n = 51). Twenty-two cases were identified as severe dengue using the WHO case classification (2009) criteria. Principal component analysis (PCA) was employed to examine the relationships of gene expression profiles with disease severity and laboratory markers of clinical severity. We find that two principal components describe most of the variance (65.3%) in the expression patterns of the cohort. Reduced expression of IDO1, TGF-β, and AhR, represented by low Component 2 scores, was significantly associated with disease severity, thrombocytopenia, and leukopenia. Higher expression levels of IDO2, IFNγ, and IFNα positively correlated with Component 1 scores, and were significantly associated with elevated ALT (p = 0.018) and AST (p = 0.017) enzymes. Our results suggest that profiling the baseline expression patterns of the IDO pathway genes may aid in the identification of dengue patients most at risk of severe disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Viral immunology
Viral immunology 医学-病毒学
CiteScore
3.60
自引率
0.00%
发文量
84
审稿时长
6-12 weeks
期刊介绍: Viral Immunology delivers cutting-edge peer-reviewed research on rare, emerging, and under-studied viruses, with special focus on analyzing mutual relationships between external viruses and internal immunity. Original research, reviews, and commentaries on relevant viruses are presented in clinical, translational, and basic science articles for researchers in multiple disciplines. Viral Immunology coverage includes: Human and animal viral immunology Research and development of viral vaccines, including field trials Immunological characterization of viral components Virus-based immunological diseases, including autoimmune syndromes Pathogenic mechanisms Viral diagnostics Tumor and cancer immunology with virus as the primary factor Viral immunology methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信