Tara Slominski, Warren M Christensen, John B Buncher, Jennifer Momsen
{"title":"情境对学生建构与推理流体动力学的影响。","authors":"Tara Slominski, Warren M Christensen, John B Buncher, Jennifer Momsen","doi":"10.1187/cbe.21-11-0312","DOIUrl":null,"url":null,"abstract":"Contextual features of assessments can influence the ideas students draw from and the ways they assemble knowledge. We used a mixed-methods approach to explore how surface-level item context impacts student reasoning. In study 1, we developed an isomorphic survey to capture student reasoning about fluid dynamics, a crosscutting phenomenon, in two item contexts (blood vessels, water pipes), and administered the survey to students in two different course contexts: human anatomy and physiology (HA&P) and physics. We observed a significant difference in two of 16 between-context comparisons and a significant difference in how HA&P students responded to our survey compared with physics students. In study 2, we conducted interviews with HA&P students to explore our findings from study 1. Using the resources and framing theoretical framework, we found that HA&P students responding to the blood vessel protocol used teleological cognitive resources more frequently compared with HA&P students responding to the water pipes version. Further, students reasoning about water pipes spontaneously introduced HA&P content. Our findings support a dynamic model of cognition and align with previous work suggesting item context impacts student reasoning. These results also underscore a need for instructors to recognize the impact of context on student reasoning about crosscutting phenomena.","PeriodicalId":56321,"journal":{"name":"Cbe-Life Sciences Education","volume":"22 2","pages":"ar15"},"PeriodicalIF":4.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2f/df/cbe-22-ar15.PMC10228272.pdf","citationCount":"1","resultStr":"{\"title\":\"The Impact of Context on Students' Framing and Reasoning about Fluid Dynamics.\",\"authors\":\"Tara Slominski, Warren M Christensen, John B Buncher, Jennifer Momsen\",\"doi\":\"10.1187/cbe.21-11-0312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contextual features of assessments can influence the ideas students draw from and the ways they assemble knowledge. We used a mixed-methods approach to explore how surface-level item context impacts student reasoning. In study 1, we developed an isomorphic survey to capture student reasoning about fluid dynamics, a crosscutting phenomenon, in two item contexts (blood vessels, water pipes), and administered the survey to students in two different course contexts: human anatomy and physiology (HA&P) and physics. We observed a significant difference in two of 16 between-context comparisons and a significant difference in how HA&P students responded to our survey compared with physics students. In study 2, we conducted interviews with HA&P students to explore our findings from study 1. Using the resources and framing theoretical framework, we found that HA&P students responding to the blood vessel protocol used teleological cognitive resources more frequently compared with HA&P students responding to the water pipes version. Further, students reasoning about water pipes spontaneously introduced HA&P content. Our findings support a dynamic model of cognition and align with previous work suggesting item context impacts student reasoning. These results also underscore a need for instructors to recognize the impact of context on student reasoning about crosscutting phenomena.\",\"PeriodicalId\":56321,\"journal\":{\"name\":\"Cbe-Life Sciences Education\",\"volume\":\"22 2\",\"pages\":\"ar15\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2f/df/cbe-22-ar15.PMC10228272.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cbe-Life Sciences Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1187/cbe.21-11-0312\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cbe-Life Sciences Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1187/cbe.21-11-0312","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
The Impact of Context on Students' Framing and Reasoning about Fluid Dynamics.
Contextual features of assessments can influence the ideas students draw from and the ways they assemble knowledge. We used a mixed-methods approach to explore how surface-level item context impacts student reasoning. In study 1, we developed an isomorphic survey to capture student reasoning about fluid dynamics, a crosscutting phenomenon, in two item contexts (blood vessels, water pipes), and administered the survey to students in two different course contexts: human anatomy and physiology (HA&P) and physics. We observed a significant difference in two of 16 between-context comparisons and a significant difference in how HA&P students responded to our survey compared with physics students. In study 2, we conducted interviews with HA&P students to explore our findings from study 1. Using the resources and framing theoretical framework, we found that HA&P students responding to the blood vessel protocol used teleological cognitive resources more frequently compared with HA&P students responding to the water pipes version. Further, students reasoning about water pipes spontaneously introduced HA&P content. Our findings support a dynamic model of cognition and align with previous work suggesting item context impacts student reasoning. These results also underscore a need for instructors to recognize the impact of context on student reasoning about crosscutting phenomena.
期刊介绍:
CBE—Life Sciences Education (LSE), a free, online quarterly journal, is published by the American Society for Cell Biology (ASCB). The journal was launched in spring 2002 as Cell Biology Education—A Journal of Life Science Education. The ASCB changed the name of the journal in spring 2006 to better reflect the breadth of its readership and the scope of its submissions.
LSE publishes peer-reviewed articles on life science education at the K–12, undergraduate, and graduate levels. The ASCB believes that learning in biology encompasses diverse fields, including math, chemistry, physics, engineering, computer science, and the interdisciplinary intersections of biology with these fields. Within biology, LSE focuses on how students are introduced to the study of life sciences, as well as approaches in cell biology, developmental biology, neuroscience, biochemistry, molecular biology, genetics, genomics, bioinformatics, and proteomics.