Zhen Zhao, Bin Hou, Li Tang, Yaping Wang, Yueqing Zhang, Zhanzhuan Ying, Jie Duo
{"title":"高原缺氧通过增加自噬诱导大鼠肺泡细胞损伤","authors":"Zhen Zhao, Bin Hou, Li Tang, Yaping Wang, Yueqing Zhang, Zhanzhuan Ying, Jie Duo","doi":"10.1111/iep.12434","DOIUrl":null,"url":null,"abstract":"<p>Autophagy has been implicated in the pathogenesis of various lung diseases. This study aimed to investigate the role of autophagy in lung injury induced by high-altitude hypoxia. Wistar rats were randomized into four groups for exposure to normal altitude or high altitude for 1, 7, 14 and 21 days with no treatment or with the treatment of 1 mg/kg rapamycin or 2 mg/kg 3-methyladenine (3-MA) for consecutive 21 days respectively. In control rats, the alveolar structure was intact with regularly arranged cells. However, inflammatory cell infiltration and shrunk alveoli were observed in rats exposed to hypoxia. Rapamycin treatment led to many shrunken alveoli with a large number of red blood cells in them. In contrast, 3-MA treatment led to almost intact alveoli or only a few shrunken alveoli. Compared to the control group exposure to high-altitude hypoxia for longer periods resulted in the aggravation of the lung injury, the formation of autophagosomes with a double-membrane structure and increased levels of Beclin-1 and LC3-II in alveolar tissues. Rapamycin treatment resulted in significant increase in Beclin-1 and LC3-II levels and further aggravation of alveolar tissue damage, while 3-MA treatment led to opposite effects. In conclusion, exposure to high-altitude hypoxia can induce autophagy of alveolar cells, which may be an important mechanism of high-altitude hypoxia-induced lung injury. The inhibition of autophagy may be a promising therapy strategy for high-altitude hypoxia-induced lung injury.</p>","PeriodicalId":14157,"journal":{"name":"International Journal of Experimental Pathology","volume":"103 4","pages":"132-139"},"PeriodicalIF":1.8000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-altitude hypoxia-induced rat alveolar cell injury by increasing autophagy\",\"authors\":\"Zhen Zhao, Bin Hou, Li Tang, Yaping Wang, Yueqing Zhang, Zhanzhuan Ying, Jie Duo\",\"doi\":\"10.1111/iep.12434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Autophagy has been implicated in the pathogenesis of various lung diseases. This study aimed to investigate the role of autophagy in lung injury induced by high-altitude hypoxia. Wistar rats were randomized into four groups for exposure to normal altitude or high altitude for 1, 7, 14 and 21 days with no treatment or with the treatment of 1 mg/kg rapamycin or 2 mg/kg 3-methyladenine (3-MA) for consecutive 21 days respectively. In control rats, the alveolar structure was intact with regularly arranged cells. However, inflammatory cell infiltration and shrunk alveoli were observed in rats exposed to hypoxia. Rapamycin treatment led to many shrunken alveoli with a large number of red blood cells in them. In contrast, 3-MA treatment led to almost intact alveoli or only a few shrunken alveoli. Compared to the control group exposure to high-altitude hypoxia for longer periods resulted in the aggravation of the lung injury, the formation of autophagosomes with a double-membrane structure and increased levels of Beclin-1 and LC3-II in alveolar tissues. Rapamycin treatment resulted in significant increase in Beclin-1 and LC3-II levels and further aggravation of alveolar tissue damage, while 3-MA treatment led to opposite effects. In conclusion, exposure to high-altitude hypoxia can induce autophagy of alveolar cells, which may be an important mechanism of high-altitude hypoxia-induced lung injury. The inhibition of autophagy may be a promising therapy strategy for high-altitude hypoxia-induced lung injury.</p>\",\"PeriodicalId\":14157,\"journal\":{\"name\":\"International Journal of Experimental Pathology\",\"volume\":\"103 4\",\"pages\":\"132-139\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Experimental Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iep.12434\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Experimental Pathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iep.12434","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
High-altitude hypoxia-induced rat alveolar cell injury by increasing autophagy
Autophagy has been implicated in the pathogenesis of various lung diseases. This study aimed to investigate the role of autophagy in lung injury induced by high-altitude hypoxia. Wistar rats were randomized into four groups for exposure to normal altitude or high altitude for 1, 7, 14 and 21 days with no treatment or with the treatment of 1 mg/kg rapamycin or 2 mg/kg 3-methyladenine (3-MA) for consecutive 21 days respectively. In control rats, the alveolar structure was intact with regularly arranged cells. However, inflammatory cell infiltration and shrunk alveoli were observed in rats exposed to hypoxia. Rapamycin treatment led to many shrunken alveoli with a large number of red blood cells in them. In contrast, 3-MA treatment led to almost intact alveoli or only a few shrunken alveoli. Compared to the control group exposure to high-altitude hypoxia for longer periods resulted in the aggravation of the lung injury, the formation of autophagosomes with a double-membrane structure and increased levels of Beclin-1 and LC3-II in alveolar tissues. Rapamycin treatment resulted in significant increase in Beclin-1 and LC3-II levels and further aggravation of alveolar tissue damage, while 3-MA treatment led to opposite effects. In conclusion, exposure to high-altitude hypoxia can induce autophagy of alveolar cells, which may be an important mechanism of high-altitude hypoxia-induced lung injury. The inhibition of autophagy may be a promising therapy strategy for high-altitude hypoxia-induced lung injury.
期刊介绍:
Experimental Pathology encompasses the use of multidisciplinary scientific techniques to investigate the pathogenesis and progression of pathologic processes. The International Journal of Experimental Pathology - IJEP - publishes papers which afford new and imaginative insights into the basic mechanisms underlying human disease, including in vitro work, animal models, and clinical research.
Aiming to report on work that addresses the common theme of mechanism at a cellular and molecular level, IJEP publishes both original experimental investigations and review articles. Recent themes for review series have covered topics as diverse as "Viruses and Cancer", "Granulomatous Diseases", "Stem cells" and "Cardiovascular Pathology".