巨噬细胞靶向研究综述:一个有前途的方法。

IF 3 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Venkata Deepthi Vemuri, Rekharani Kushwaha, Gollu Gowri, Nalini Mathala, Swathi Nalla, Sasikala Allam, Gurijala Lekhya
{"title":"巨噬细胞靶向研究综述:一个有前途的方法。","authors":"Venkata Deepthi Vemuri,&nbsp;Rekharani Kushwaha,&nbsp;Gollu Gowri,&nbsp;Nalini Mathala,&nbsp;Swathi Nalla,&nbsp;Sasikala Allam,&nbsp;Gurijala Lekhya","doi":"10.1615/CritRevTherDrugCarrierSyst.2022038827","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are immuno cells with high flexibility among hematopoietic system. Macrophages are tangled with many diseases like chronic inflammatory, atherosclerosis, autoimmune, and cancer. Macrophages play a major role in developing the inflammation and meanwhile resolving the damage occurred during these disease conditions. Therefore, the use of macrophages in targeted drug delivery appeared to be a promising approach in modifying the microenvironment of inflammatory diseases. The macrophages with cellular backpacks loaded with drugs were appeared to be the effective drug transporter to the brain inflammation. Till date, among the different carrier systems emerged among macrophage targeting: liposomes, microspheres, nanoparticles, and dendrimers were extensively studied. The physicochemical properties like components, lipophilicity, hydrophilicity, ligand presence, and concentration of these carriers may vary the efficacy and specificity of drug targeting to macrophages. The present review provides an insight into M1 and M2 macrophages characteristics, mainly discussed the role of macrophages in regulating several inflammatory diseases. This article underlines the current status and application of different carriers for targeted drug delivery to macrophages along with their efficacy and specificity. In general, the targeted drug delivery was achieved using the carrier systems by removing the intrinsic pathway and bio protection which is offered to the therapeutic molecules. Further, the review also summarizes the newer approaches for macrophage targeting with a brief overview on recent advances and future prospects.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Overview on Macrophage Targeting: A Promising Approach.\",\"authors\":\"Venkata Deepthi Vemuri,&nbsp;Rekharani Kushwaha,&nbsp;Gollu Gowri,&nbsp;Nalini Mathala,&nbsp;Swathi Nalla,&nbsp;Sasikala Allam,&nbsp;Gurijala Lekhya\",\"doi\":\"10.1615/CritRevTherDrugCarrierSyst.2022038827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophages are immuno cells with high flexibility among hematopoietic system. Macrophages are tangled with many diseases like chronic inflammatory, atherosclerosis, autoimmune, and cancer. Macrophages play a major role in developing the inflammation and meanwhile resolving the damage occurred during these disease conditions. Therefore, the use of macrophages in targeted drug delivery appeared to be a promising approach in modifying the microenvironment of inflammatory diseases. The macrophages with cellular backpacks loaded with drugs were appeared to be the effective drug transporter to the brain inflammation. Till date, among the different carrier systems emerged among macrophage targeting: liposomes, microspheres, nanoparticles, and dendrimers were extensively studied. The physicochemical properties like components, lipophilicity, hydrophilicity, ligand presence, and concentration of these carriers may vary the efficacy and specificity of drug targeting to macrophages. The present review provides an insight into M1 and M2 macrophages characteristics, mainly discussed the role of macrophages in regulating several inflammatory diseases. This article underlines the current status and application of different carriers for targeted drug delivery to macrophages along with their efficacy and specificity. In general, the targeted drug delivery was achieved using the carrier systems by removing the intrinsic pathway and bio protection which is offered to the therapeutic molecules. Further, the review also summarizes the newer approaches for macrophage targeting with a brief overview on recent advances and future prospects.</p>\",\"PeriodicalId\":50614,\"journal\":{\"name\":\"Critical Reviews in Therapeutic Drug Carrier Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Therapeutic Drug Carrier Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2022038827\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Therapeutic Drug Carrier Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2022038827","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

巨噬细胞是造血系统中具有高度灵活性的免疫细胞。巨噬细胞与许多疾病如慢性炎症、动脉粥样硬化、自身免疫性疾病和癌症有关。巨噬细胞在炎症的发生和修复中起着重要的作用。因此,巨噬细胞用于靶向药物递送似乎是一种很有前途的方法来改变炎症性疾病的微环境。携带药物的巨噬细胞似乎是脑炎症的有效药物转运体。迄今为止,在巨噬细胞靶向中出现的不同载体系统中:脂质体、微球、纳米颗粒和树状大分子被广泛研究。这些载体的成分、亲脂性、亲水性、配体的存在和浓度等理化性质可能会改变药物靶向巨噬细胞的功效和特异性。本文综述了M1和M2巨噬细胞的特点,主要讨论了巨噬细胞在几种炎症性疾病中的调节作用。本文重点介绍了巨噬细胞靶向给药的不同载体的现状和应用,以及它们的疗效和特异性。一般来说,靶向药物递送是使用载体系统通过去除提供给治疗分子的内在途径和生物保护来实现的。此外,本文还总结了巨噬细胞靶向治疗的新方法,并对其最新进展和未来前景进行了简要概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Overview on Macrophage Targeting: A Promising Approach.

Macrophages are immuno cells with high flexibility among hematopoietic system. Macrophages are tangled with many diseases like chronic inflammatory, atherosclerosis, autoimmune, and cancer. Macrophages play a major role in developing the inflammation and meanwhile resolving the damage occurred during these disease conditions. Therefore, the use of macrophages in targeted drug delivery appeared to be a promising approach in modifying the microenvironment of inflammatory diseases. The macrophages with cellular backpacks loaded with drugs were appeared to be the effective drug transporter to the brain inflammation. Till date, among the different carrier systems emerged among macrophage targeting: liposomes, microspheres, nanoparticles, and dendrimers were extensively studied. The physicochemical properties like components, lipophilicity, hydrophilicity, ligand presence, and concentration of these carriers may vary the efficacy and specificity of drug targeting to macrophages. The present review provides an insight into M1 and M2 macrophages characteristics, mainly discussed the role of macrophages in regulating several inflammatory diseases. This article underlines the current status and application of different carriers for targeted drug delivery to macrophages along with their efficacy and specificity. In general, the targeted drug delivery was achieved using the carrier systems by removing the intrinsic pathway and bio protection which is offered to the therapeutic molecules. Further, the review also summarizes the newer approaches for macrophage targeting with a brief overview on recent advances and future prospects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
18.50%
发文量
27
审稿时长
>12 weeks
期刊介绍: Therapeutic uses of a variety of drug carrier systems have significant impact on the treatment and potential cure of many chronic diseases, including cancer, diabetes mellitus, psoriasis, parkinsons, Alzheimer, rheumatoid arthritis, HIV infection, infectious diseases, asthma, and drug addiction. Scientific efforts in these areas are multidisciplinary, involving the physical, biological, medical, pharmaceutical, biological materials, and engineering fields. Articles concerning this field appear in a wide variety of journals. With the vast increase in the number of articles and the tendency to fragment science, it becomes increasingly difficult to keep abreast of the literature and to sort out and evaluate the importance and reliability of the data, especially when proprietary considerations are involved. Abstracts and noncritical articles often do not provide a sufficiently reliable basis for proper assessment of a given field without the additional perusal of the original literature. This journal bridges this gap by publishing authoritative, objective, comprehensive multidisciplinary critical review papers with emphasis on formulation and delivery systems. Both invited and contributed articles are subject to peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信