{"title":"纳米复合水凝胶:对眼部疾病治疗的乐观见解。","authors":"Shailvi Shah, Riya Patel, Gayatri Patel","doi":"10.2174/1872210517666230731102130","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The distinct anatomy and physiology of the eye represent it as a specialized organ. The noumenal physiological barriers, whose prominent role is to prevent the entrance of extracellular substances, reduce the bioavailability of medicines taken locally. Nanocarriers offer many advantages, such as site-specific drug delivery, reduced dose-related side effects, more drug loading capacity, etc. Nanoparticles, nano micelles, Nanostructured Lipid Carriers (NLCs), Solid Lipid Nanoparticles (SLNs), liposomes, polymeric nanoparticles, microspheres, microemulsions, etc., have all undergone significant analysis to overcome numerous static and dynamic obstacles.</p><p><strong>Objective: </strong>Among the several methods of delivering drugs, one of the most captivating and demanding is ocular drug delivery (ODD). The intent of developing formulations for an extended period can be partially achieved via thermoresponsive hydrogels. It is feasible to store fluids inside a cross-linked gel system for efficient long-term administration owing to hydrogels, which are hydrophilic polymeric networks with excellent three-dimensional structures and water or biological fluid absorption capacities. Hydrogels can be incorporated into nanocarriers to achieve site-specific action and prolonged release.</p><p><strong>Method: </strong>Related patents and research reports with various platforms like Science Direct, Springer, PubMed, Google Scholar, Shodhganga, and Patseer were used to gather the data, and a search methodology was availed.</p><p><strong>Result: </strong>The paper thoroughly summarizes the strategies for incorporating drugs with hydrogel into a nanocarrier to provide sustained release and prolonged therapeutic effects. According to the comprehensive review of literature and patents like (US2015374633A1), (US10980882B2), and (WO2011018800A2), nanocarrier-loaded thermoresponsive hydrogels show promising results.</p><p><strong>Conclusion: </strong>Due to their propensity to alter state in reaction to temperature changes, thermoresponsive hydrogels can improve medication bioavailability. Intervening nanocarriers loaded hydrogels directly on the targeted site displays local intervention and site-specificity. Thus, the use of nanocarriers in ocular drug delivery is encouraging.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nanocomposite hydrogels: an optimistic insight towards the treatments of ocular disorders.\",\"authors\":\"Shailvi Shah, Riya Patel, Gayatri Patel\",\"doi\":\"10.2174/1872210517666230731102130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The distinct anatomy and physiology of the eye represent it as a specialized organ. The noumenal physiological barriers, whose prominent role is to prevent the entrance of extracellular substances, reduce the bioavailability of medicines taken locally. Nanocarriers offer many advantages, such as site-specific drug delivery, reduced dose-related side effects, more drug loading capacity, etc. Nanoparticles, nano micelles, Nanostructured Lipid Carriers (NLCs), Solid Lipid Nanoparticles (SLNs), liposomes, polymeric nanoparticles, microspheres, microemulsions, etc., have all undergone significant analysis to overcome numerous static and dynamic obstacles.</p><p><strong>Objective: </strong>Among the several methods of delivering drugs, one of the most captivating and demanding is ocular drug delivery (ODD). The intent of developing formulations for an extended period can be partially achieved via thermoresponsive hydrogels. It is feasible to store fluids inside a cross-linked gel system for efficient long-term administration owing to hydrogels, which are hydrophilic polymeric networks with excellent three-dimensional structures and water or biological fluid absorption capacities. Hydrogels can be incorporated into nanocarriers to achieve site-specific action and prolonged release.</p><p><strong>Method: </strong>Related patents and research reports with various platforms like Science Direct, Springer, PubMed, Google Scholar, Shodhganga, and Patseer were used to gather the data, and a search methodology was availed.</p><p><strong>Result: </strong>The paper thoroughly summarizes the strategies for incorporating drugs with hydrogel into a nanocarrier to provide sustained release and prolonged therapeutic effects. According to the comprehensive review of literature and patents like (US2015374633A1), (US10980882B2), and (WO2011018800A2), nanocarrier-loaded thermoresponsive hydrogels show promising results.</p><p><strong>Conclusion: </strong>Due to their propensity to alter state in reaction to temperature changes, thermoresponsive hydrogels can improve medication bioavailability. Intervening nanocarriers loaded hydrogels directly on the targeted site displays local intervention and site-specificity. Thus, the use of nanocarriers in ocular drug delivery is encouraging.</p>\",\"PeriodicalId\":49324,\"journal\":{\"name\":\"Recent Patents on Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Patents on Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/1872210517666230731102130\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/1872210517666230731102130","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanocomposite hydrogels: an optimistic insight towards the treatments of ocular disorders.
Background: The distinct anatomy and physiology of the eye represent it as a specialized organ. The noumenal physiological barriers, whose prominent role is to prevent the entrance of extracellular substances, reduce the bioavailability of medicines taken locally. Nanocarriers offer many advantages, such as site-specific drug delivery, reduced dose-related side effects, more drug loading capacity, etc. Nanoparticles, nano micelles, Nanostructured Lipid Carriers (NLCs), Solid Lipid Nanoparticles (SLNs), liposomes, polymeric nanoparticles, microspheres, microemulsions, etc., have all undergone significant analysis to overcome numerous static and dynamic obstacles.
Objective: Among the several methods of delivering drugs, one of the most captivating and demanding is ocular drug delivery (ODD). The intent of developing formulations for an extended period can be partially achieved via thermoresponsive hydrogels. It is feasible to store fluids inside a cross-linked gel system for efficient long-term administration owing to hydrogels, which are hydrophilic polymeric networks with excellent three-dimensional structures and water or biological fluid absorption capacities. Hydrogels can be incorporated into nanocarriers to achieve site-specific action and prolonged release.
Method: Related patents and research reports with various platforms like Science Direct, Springer, PubMed, Google Scholar, Shodhganga, and Patseer were used to gather the data, and a search methodology was availed.
Result: The paper thoroughly summarizes the strategies for incorporating drugs with hydrogel into a nanocarrier to provide sustained release and prolonged therapeutic effects. According to the comprehensive review of literature and patents like (US2015374633A1), (US10980882B2), and (WO2011018800A2), nanocarrier-loaded thermoresponsive hydrogels show promising results.
Conclusion: Due to their propensity to alter state in reaction to temperature changes, thermoresponsive hydrogels can improve medication bioavailability. Intervening nanocarriers loaded hydrogels directly on the targeted site displays local intervention and site-specificity. Thus, the use of nanocarriers in ocular drug delivery is encouraging.
期刊介绍:
Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.