{"title":"基于MS和NMR数据的机器学习辅助天然产物结构标注。","authors":"Guilin Hu , Minghua Qiu","doi":"10.1039/d3np00025g","DOIUrl":null,"url":null,"abstract":"<div><p>Covering: up to March 2023</p><p>Machine learning (ML) has emerged as a popular tool for analyzing the structures of natural products (NPs). This review presents a summary of the recent advancements in ML-assisted mass spectrometry (MS) and nuclear magnetic resonance (NMR) data analysis to establish the chemical structures of NPs. First, ML-based MS/MS analyses that rely on library matching are discussed, which involves the utilization of ML algorithms to calculate similarity, predict the MS/MS fragments, and form molecular fingerprint. Then, ML assisted MS/MS structural annotation without library matching is reviewed. Furthermore, the cases of ML algorithms in assisting structural studies of NPs based on NMR are discussed from four perspectives: NMR prediction, functional group identification, structural categorization and quantum chemical calculation. Finally, the review concludes with a discussion of the challenges and the trends associated with the structural establishment of NPs based on ML algorithms.</p></div>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine learning-assisted structure annotation of natural products based on MS and NMR data\",\"authors\":\"Guilin Hu , Minghua Qiu\",\"doi\":\"10.1039/d3np00025g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Covering: up to March 2023</p><p>Machine learning (ML) has emerged as a popular tool for analyzing the structures of natural products (NPs). This review presents a summary of the recent advancements in ML-assisted mass spectrometry (MS) and nuclear magnetic resonance (NMR) data analysis to establish the chemical structures of NPs. First, ML-based MS/MS analyses that rely on library matching are discussed, which involves the utilization of ML algorithms to calculate similarity, predict the MS/MS fragments, and form molecular fingerprint. Then, ML assisted MS/MS structural annotation without library matching is reviewed. Furthermore, the cases of ML algorithms in assisting structural studies of NPs based on NMR are discussed from four perspectives: NMR prediction, functional group identification, structural categorization and quantum chemical calculation. Finally, the review concludes with a discussion of the challenges and the trends associated with the structural establishment of NPs based on ML algorithms.</p></div>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S0265056823001113\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0265056823001113","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Machine learning-assisted structure annotation of natural products based on MS and NMR data
Covering: up to March 2023
Machine learning (ML) has emerged as a popular tool for analyzing the structures of natural products (NPs). This review presents a summary of the recent advancements in ML-assisted mass spectrometry (MS) and nuclear magnetic resonance (NMR) data analysis to establish the chemical structures of NPs. First, ML-based MS/MS analyses that rely on library matching are discussed, which involves the utilization of ML algorithms to calculate similarity, predict the MS/MS fragments, and form molecular fingerprint. Then, ML assisted MS/MS structural annotation without library matching is reviewed. Furthermore, the cases of ML algorithms in assisting structural studies of NPs based on NMR are discussed from four perspectives: NMR prediction, functional group identification, structural categorization and quantum chemical calculation. Finally, the review concludes with a discussion of the challenges and the trends associated with the structural establishment of NPs based on ML algorithms.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.