{"title":"单体组成和填料分数对树脂复合材料表面显微硬度和固化深度的影响","authors":"Diana Leyva del Rio, William Michael Johnston","doi":"10.1111/eos.12933","DOIUrl":null,"url":null,"abstract":"<p>This study evaluated microhardness profiles and calculated depths of cure at 80% of the surface microhardness of experimental dental resin composites having different base monomer compositions and different filler fractions. Composites were prepared using four different base monomers (bisphenol A-glycidyl methacrylate [Bis-GMA], urethane dimethacrylate [UDMA], ethoxylated bisphenol-A dimethacrylate [Bis-EMA], and Fit-852) with triethylene glycol dimethacrylate (TEGDMA) used as a co-monomer at three filler:resin matrix weight percent fractions (50:50, 60:40, and 70:30). Uncured material was placed in 3D printed molds and light cured for 40 s from the top surface only. Knoop microhardness was measured at the top of the specimen, and at every 0.5 mm up to 4 mm in depth. Microhardness at the surface increased in all experimental composites as the filler fraction increased. When comparing base monomers, microhardness was the highest in UDMA-based composites, while Bis-GMA-based composites showed the lowest values. When comparing depth of cure as a function of base monomer type, both Bis-GMA and Bis-EMA showed significantly lower values than UDMA or Fit-852. Composites having 50 wt% filler showed a significantly higher depth of cure than those with 60 and 70 wt% filler. Base monomer and filler fraction significantly influence microhardness and depth of cure in these experimental composites.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eos.12933","citationCount":"2","resultStr":"{\"title\":\"Effect of monomer composition and filler fraction on surface microhardness and depth of cure of experimental resin composites\",\"authors\":\"Diana Leyva del Rio, William Michael Johnston\",\"doi\":\"10.1111/eos.12933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study evaluated microhardness profiles and calculated depths of cure at 80% of the surface microhardness of experimental dental resin composites having different base monomer compositions and different filler fractions. Composites were prepared using four different base monomers (bisphenol A-glycidyl methacrylate [Bis-GMA], urethane dimethacrylate [UDMA], ethoxylated bisphenol-A dimethacrylate [Bis-EMA], and Fit-852) with triethylene glycol dimethacrylate (TEGDMA) used as a co-monomer at three filler:resin matrix weight percent fractions (50:50, 60:40, and 70:30). Uncured material was placed in 3D printed molds and light cured for 40 s from the top surface only. Knoop microhardness was measured at the top of the specimen, and at every 0.5 mm up to 4 mm in depth. Microhardness at the surface increased in all experimental composites as the filler fraction increased. When comparing base monomers, microhardness was the highest in UDMA-based composites, while Bis-GMA-based composites showed the lowest values. When comparing depth of cure as a function of base monomer type, both Bis-GMA and Bis-EMA showed significantly lower values than UDMA or Fit-852. Composites having 50 wt% filler showed a significantly higher depth of cure than those with 60 and 70 wt% filler. Base monomer and filler fraction significantly influence microhardness and depth of cure in these experimental composites.</p>\",\"PeriodicalId\":11983,\"journal\":{\"name\":\"European Journal of Oral Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eos.12933\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Oral Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eos.12933\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Oral Sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eos.12933","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Effect of monomer composition and filler fraction on surface microhardness and depth of cure of experimental resin composites
This study evaluated microhardness profiles and calculated depths of cure at 80% of the surface microhardness of experimental dental resin composites having different base monomer compositions and different filler fractions. Composites were prepared using four different base monomers (bisphenol A-glycidyl methacrylate [Bis-GMA], urethane dimethacrylate [UDMA], ethoxylated bisphenol-A dimethacrylate [Bis-EMA], and Fit-852) with triethylene glycol dimethacrylate (TEGDMA) used as a co-monomer at three filler:resin matrix weight percent fractions (50:50, 60:40, and 70:30). Uncured material was placed in 3D printed molds and light cured for 40 s from the top surface only. Knoop microhardness was measured at the top of the specimen, and at every 0.5 mm up to 4 mm in depth. Microhardness at the surface increased in all experimental composites as the filler fraction increased. When comparing base monomers, microhardness was the highest in UDMA-based composites, while Bis-GMA-based composites showed the lowest values. When comparing depth of cure as a function of base monomer type, both Bis-GMA and Bis-EMA showed significantly lower values than UDMA or Fit-852. Composites having 50 wt% filler showed a significantly higher depth of cure than those with 60 and 70 wt% filler. Base monomer and filler fraction significantly influence microhardness and depth of cure in these experimental composites.
期刊介绍:
The European Journal of Oral Sciences is an international journal which publishes original research papers within clinical dentistry, on all basic science aspects of structure, chemistry, developmental biology, physiology and pathology of relevant tissues, as well as on microbiology, biomaterials and the behavioural sciences as they relate to dentistry. In general, analytical studies are preferred to descriptive ones. Reviews, Short Communications and Letters to the Editor will also be considered for publication.
The journal is published bimonthly.