Hüseyin Fındık, Mehmet Gökhan Aslan, Murat Okutucu, Adnan Yılmaz, Levent Tümkaya, Tolga Mercantepe, Kerimali Akyıldız, Feyzahan Uzun
{"title":"越桔提取物通过 eNOS 和 8-OHdG 表达对 X 射线照射诱导的视网膜毒性的保护作用","authors":"Hüseyin Fındık, Mehmet Gökhan Aslan, Murat Okutucu, Adnan Yılmaz, Levent Tümkaya, Tolga Mercantepe, Kerimali Akyıldız, Feyzahan Uzun","doi":"10.1159/000532011","DOIUrl":null,"url":null,"abstract":"<p><p>Every year, hundreds of thousands of cancer patients receive radiotherapy treatment. Oxidative stress is observed in healthy tissues due to irradiation exposure. The present study is the first to address the effects of Vaccinium myrtillus (whortleberry, WB) against the effects of X-ray irradiation on retinal tissue. Twenty-four Sprague-Dawley rats were randomly allocated into 4 groups: (1) control group: rats without any treatment, (2) X-ray irradiation group: 8 Gray (Gy) RT for 2 days, (3) 100 mg WB extract + X-ray irradiation group: 8 Gy irradiation for 2 days and followed by intraperitoneal (IP) WB extract (100 mg/kg) supplementation for 10 days, (4) 200 mg WB extract + X-ray irradiation group: 8 Gy irradiation for 2 days and followed by IP WB extract (200 mg/kg) supplementation for 10 days. Eyes were enucleated on the 10th day after RT for histopathological, immunohistochemical (8-hydroxy-2'-deoxyguanosine [8-OHdG], endothelial nitric oxide synthase [eNOS]), and biochemical analyses (glutathione peroxidase [GSH], and malondialdehyde [MDA]). The GSH levels significantly decreased and MDA levels and 8-OHdG staining increased after X-ray irradiation compared to the control group. Combined X-ray irradiation + WB treatment significantly increased GSH levels and significantly decreased MDA production and 8-OHdG staining. However, eNOS staining was not affected in any of the groups. Besides, X-ray irradiation significantly increased cell losses and edematous areas. The WB significantly reversed the cellular damage in ganglion cells, inner nuclear, and outer nuclear layers in quantitative analyses. The X-ray irradiation caused significant retinal impairment, and additional WB therapy provided protective effects against radiation-induced retinopathy. These results may suggest WB extract as an adjuvant therapy to reverse retinal impairments after X-ray irradiation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152048/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protective Effect of Vaccinium myrtillus Extract on X-Ray Irradiation-Induced Retinal Toxicity via eNOS and 8-OHdG expression.\",\"authors\":\"Hüseyin Fındık, Mehmet Gökhan Aslan, Murat Okutucu, Adnan Yılmaz, Levent Tümkaya, Tolga Mercantepe, Kerimali Akyıldız, Feyzahan Uzun\",\"doi\":\"10.1159/000532011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Every year, hundreds of thousands of cancer patients receive radiotherapy treatment. Oxidative stress is observed in healthy tissues due to irradiation exposure. The present study is the first to address the effects of Vaccinium myrtillus (whortleberry, WB) against the effects of X-ray irradiation on retinal tissue. Twenty-four Sprague-Dawley rats were randomly allocated into 4 groups: (1) control group: rats without any treatment, (2) X-ray irradiation group: 8 Gray (Gy) RT for 2 days, (3) 100 mg WB extract + X-ray irradiation group: 8 Gy irradiation for 2 days and followed by intraperitoneal (IP) WB extract (100 mg/kg) supplementation for 10 days, (4) 200 mg WB extract + X-ray irradiation group: 8 Gy irradiation for 2 days and followed by IP WB extract (200 mg/kg) supplementation for 10 days. Eyes were enucleated on the 10th day after RT for histopathological, immunohistochemical (8-hydroxy-2'-deoxyguanosine [8-OHdG], endothelial nitric oxide synthase [eNOS]), and biochemical analyses (glutathione peroxidase [GSH], and malondialdehyde [MDA]). The GSH levels significantly decreased and MDA levels and 8-OHdG staining increased after X-ray irradiation compared to the control group. Combined X-ray irradiation + WB treatment significantly increased GSH levels and significantly decreased MDA production and 8-OHdG staining. However, eNOS staining was not affected in any of the groups. Besides, X-ray irradiation significantly increased cell losses and edematous areas. The WB significantly reversed the cellular damage in ganglion cells, inner nuclear, and outer nuclear layers in quantitative analyses. The X-ray irradiation caused significant retinal impairment, and additional WB therapy provided protective effects against radiation-induced retinopathy. These results may suggest WB extract as an adjuvant therapy to reverse retinal impairments after X-ray irradiation.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152048/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000532011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000532011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Protective Effect of Vaccinium myrtillus Extract on X-Ray Irradiation-Induced Retinal Toxicity via eNOS and 8-OHdG expression.
Every year, hundreds of thousands of cancer patients receive radiotherapy treatment. Oxidative stress is observed in healthy tissues due to irradiation exposure. The present study is the first to address the effects of Vaccinium myrtillus (whortleberry, WB) against the effects of X-ray irradiation on retinal tissue. Twenty-four Sprague-Dawley rats were randomly allocated into 4 groups: (1) control group: rats without any treatment, (2) X-ray irradiation group: 8 Gray (Gy) RT for 2 days, (3) 100 mg WB extract + X-ray irradiation group: 8 Gy irradiation for 2 days and followed by intraperitoneal (IP) WB extract (100 mg/kg) supplementation for 10 days, (4) 200 mg WB extract + X-ray irradiation group: 8 Gy irradiation for 2 days and followed by IP WB extract (200 mg/kg) supplementation for 10 days. Eyes were enucleated on the 10th day after RT for histopathological, immunohistochemical (8-hydroxy-2'-deoxyguanosine [8-OHdG], endothelial nitric oxide synthase [eNOS]), and biochemical analyses (glutathione peroxidase [GSH], and malondialdehyde [MDA]). The GSH levels significantly decreased and MDA levels and 8-OHdG staining increased after X-ray irradiation compared to the control group. Combined X-ray irradiation + WB treatment significantly increased GSH levels and significantly decreased MDA production and 8-OHdG staining. However, eNOS staining was not affected in any of the groups. Besides, X-ray irradiation significantly increased cell losses and edematous areas. The WB significantly reversed the cellular damage in ganglion cells, inner nuclear, and outer nuclear layers in quantitative analyses. The X-ray irradiation caused significant retinal impairment, and additional WB therapy provided protective effects against radiation-induced retinopathy. These results may suggest WB extract as an adjuvant therapy to reverse retinal impairments after X-ray irradiation.