{"title":"基于单变量神经变性生物标志物的图卷积网络在阿尔茨海默病诊断中的应用。","authors":"Zongshuai Qu;Tao Yao;Xinghui Liu;Gang Wang","doi":"10.1109/JTEHM.2023.3285723","DOIUrl":null,"url":null,"abstract":"Objective: Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease that is not easily detectable in the early stage. This study proposed an efficient method of applying a graph convolutional network (GCN) on the early prediction of AD. Methods: We proposed a univariate neurodegeneration biomarker (UNB) based GCN semi-supervised classification framework. We generated UNB by comparing the similarity of individual morphological atrophy pattern and the atrophy pattern of \n<inline-formula> <tex-math>$\\text{A}\\beta +$ </tex-math></inline-formula>\n AD group according to the brain morphological abnormalities induced by AD. For the GCN semi-supervised classification model, we took the UNBs of individuals as the features of nodes and constructed the weight of edges according to the similarity of phenotypic information between individuals, which explored the essential features of individuals through spectral graph convolution. The attention module was constructed and embedded into the GCN framework, which may refine the input morphological features to highlight the main impact of AD on the cerebral cortex and weaken the instability caused by individual diversities, thereby identifying the significant ROIs affected by AD and improving the classification accuracy. Results: We tested the UNB-GCN framework on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The estimated minimum sample sizes were 156, 349 and 423 for the longitudinal \n<inline-formula> <tex-math>$\\text{A}\\beta +$ </tex-math></inline-formula>\n AD, \n<inline-formula> <tex-math>$\\text{A}\\beta +$ </tex-math></inline-formula>\n mild cognitive impairment (MCI) and \n<inline-formula> <tex-math>$\\text{A}\\beta +$ </tex-math></inline-formula>\n cognitively unimpaired (CU) groups, respectively. And the proposed UNB-GCN framework combined with the attention module can effectively improve the classification performance with 93.90% classification accuracy for AD vs. CU and 82.05% for AD vs. MCI on the validation set. Conclusion: The proposed UNB measures were superior to the conventional volume measures in describing the AD-induced cerebral cortex morphological changes. And the UNB-GCN framework combined with attention module may effectively improve the classification performance between MCI subjects and AD patients. Clinical and Translational Impact Statement: This study aims to predict the early AD patients, so as to help clinicians develop effective interventions to delay the deterioration of AD symptoms.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"11 ","pages":"405-416"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10149537","citationCount":"2","resultStr":"{\"title\":\"A Graph Convolutional Network Based on Univariate Neurodegeneration Biomarker for Alzheimer’s Disease Diagnosis\",\"authors\":\"Zongshuai Qu;Tao Yao;Xinghui Liu;Gang Wang\",\"doi\":\"10.1109/JTEHM.2023.3285723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease that is not easily detectable in the early stage. This study proposed an efficient method of applying a graph convolutional network (GCN) on the early prediction of AD. Methods: We proposed a univariate neurodegeneration biomarker (UNB) based GCN semi-supervised classification framework. We generated UNB by comparing the similarity of individual morphological atrophy pattern and the atrophy pattern of \\n<inline-formula> <tex-math>$\\\\text{A}\\\\beta +$ </tex-math></inline-formula>\\n AD group according to the brain morphological abnormalities induced by AD. For the GCN semi-supervised classification model, we took the UNBs of individuals as the features of nodes and constructed the weight of edges according to the similarity of phenotypic information between individuals, which explored the essential features of individuals through spectral graph convolution. The attention module was constructed and embedded into the GCN framework, which may refine the input morphological features to highlight the main impact of AD on the cerebral cortex and weaken the instability caused by individual diversities, thereby identifying the significant ROIs affected by AD and improving the classification accuracy. Results: We tested the UNB-GCN framework on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The estimated minimum sample sizes were 156, 349 and 423 for the longitudinal \\n<inline-formula> <tex-math>$\\\\text{A}\\\\beta +$ </tex-math></inline-formula>\\n AD, \\n<inline-formula> <tex-math>$\\\\text{A}\\\\beta +$ </tex-math></inline-formula>\\n mild cognitive impairment (MCI) and \\n<inline-formula> <tex-math>$\\\\text{A}\\\\beta +$ </tex-math></inline-formula>\\n cognitively unimpaired (CU) groups, respectively. And the proposed UNB-GCN framework combined with the attention module can effectively improve the classification performance with 93.90% classification accuracy for AD vs. CU and 82.05% for AD vs. MCI on the validation set. Conclusion: The proposed UNB measures were superior to the conventional volume measures in describing the AD-induced cerebral cortex morphological changes. And the UNB-GCN framework combined with attention module may effectively improve the classification performance between MCI subjects and AD patients. Clinical and Translational Impact Statement: This study aims to predict the early AD patients, so as to help clinicians develop effective interventions to delay the deterioration of AD symptoms.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"11 \",\"pages\":\"405-416\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10149537\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10149537/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10149537/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Graph Convolutional Network Based on Univariate Neurodegeneration Biomarker for Alzheimer’s Disease Diagnosis
Objective: Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease that is not easily detectable in the early stage. This study proposed an efficient method of applying a graph convolutional network (GCN) on the early prediction of AD. Methods: We proposed a univariate neurodegeneration biomarker (UNB) based GCN semi-supervised classification framework. We generated UNB by comparing the similarity of individual morphological atrophy pattern and the atrophy pattern of
$\text{A}\beta +$
AD group according to the brain morphological abnormalities induced by AD. For the GCN semi-supervised classification model, we took the UNBs of individuals as the features of nodes and constructed the weight of edges according to the similarity of phenotypic information between individuals, which explored the essential features of individuals through spectral graph convolution. The attention module was constructed and embedded into the GCN framework, which may refine the input morphological features to highlight the main impact of AD on the cerebral cortex and weaken the instability caused by individual diversities, thereby identifying the significant ROIs affected by AD and improving the classification accuracy. Results: We tested the UNB-GCN framework on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The estimated minimum sample sizes were 156, 349 and 423 for the longitudinal
$\text{A}\beta +$
AD,
$\text{A}\beta +$
mild cognitive impairment (MCI) and
$\text{A}\beta +$
cognitively unimpaired (CU) groups, respectively. And the proposed UNB-GCN framework combined with the attention module can effectively improve the classification performance with 93.90% classification accuracy for AD vs. CU and 82.05% for AD vs. MCI on the validation set. Conclusion: The proposed UNB measures were superior to the conventional volume measures in describing the AD-induced cerebral cortex morphological changes. And the UNB-GCN framework combined with attention module may effectively improve the classification performance between MCI subjects and AD patients. Clinical and Translational Impact Statement: This study aims to predict the early AD patients, so as to help clinicians develop effective interventions to delay the deterioration of AD symptoms.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.