Marie Barshutina, Dmitry Yakubovsky, Roman Kirtaev, Valentyn Volkov, Aleksey Arsenin, Anastasiya Vladimirova, Andrei Baymiev, Sergey Barshutin
{"title":"具有抗菌性能的有机硅界面设计。","authors":"Marie Barshutina, Dmitry Yakubovsky, Roman Kirtaev, Valentyn Volkov, Aleksey Arsenin, Anastasiya Vladimirova, Andrei Baymiev, Sergey Barshutin","doi":"10.1080/08927014.2023.2228206","DOIUrl":null,"url":null,"abstract":"<p><p>Silicone implants are widely used for plastic or reconstruction medical applications. However, they can cause severe infections of inner tissues due to bacterial adhesion and biofilm growth on implant surfaces. The development of new antibacterial nanostructured surfaces can be considered as the most promising strategy to deal with this problem. In this article, we studied the influence of nanostructuring parameters on the antibacterial properties of silicone surfaces. Nanostructured silicone substrates with nanopillars of various dimensions were fabricated using a simple soft lithography technique. Upon testing of the obtained substrates, we identified the optimal parameters of silicone nanostructures to achieve the most pronounced antibacterial effect against the bacterial culture of <i>Escherichia coli</i>. It was demonstrated that up to 90% reduction in bacterial population compared to flat silicone substrates can be achieved. We also discussed possible underlying mechanisms behind the observed antibacterial effect, the understanding of which is essential for further progress in this field.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":"39 5","pages":"473-482"},"PeriodicalIF":2.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of silicone interfaces with antibacterial properties.\",\"authors\":\"Marie Barshutina, Dmitry Yakubovsky, Roman Kirtaev, Valentyn Volkov, Aleksey Arsenin, Anastasiya Vladimirova, Andrei Baymiev, Sergey Barshutin\",\"doi\":\"10.1080/08927014.2023.2228206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silicone implants are widely used for plastic or reconstruction medical applications. However, they can cause severe infections of inner tissues due to bacterial adhesion and biofilm growth on implant surfaces. The development of new antibacterial nanostructured surfaces can be considered as the most promising strategy to deal with this problem. In this article, we studied the influence of nanostructuring parameters on the antibacterial properties of silicone surfaces. Nanostructured silicone substrates with nanopillars of various dimensions were fabricated using a simple soft lithography technique. Upon testing of the obtained substrates, we identified the optimal parameters of silicone nanostructures to achieve the most pronounced antibacterial effect against the bacterial culture of <i>Escherichia coli</i>. It was demonstrated that up to 90% reduction in bacterial population compared to flat silicone substrates can be achieved. We also discussed possible underlying mechanisms behind the observed antibacterial effect, the understanding of which is essential for further progress in this field.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\"39 5\",\"pages\":\"473-482\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2023.2228206\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2023.2228206","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Design of silicone interfaces with antibacterial properties.
Silicone implants are widely used for plastic or reconstruction medical applications. However, they can cause severe infections of inner tissues due to bacterial adhesion and biofilm growth on implant surfaces. The development of new antibacterial nanostructured surfaces can be considered as the most promising strategy to deal with this problem. In this article, we studied the influence of nanostructuring parameters on the antibacterial properties of silicone surfaces. Nanostructured silicone substrates with nanopillars of various dimensions were fabricated using a simple soft lithography technique. Upon testing of the obtained substrates, we identified the optimal parameters of silicone nanostructures to achieve the most pronounced antibacterial effect against the bacterial culture of Escherichia coli. It was demonstrated that up to 90% reduction in bacterial population compared to flat silicone substrates can be achieved. We also discussed possible underlying mechanisms behind the observed antibacterial effect, the understanding of which is essential for further progress in this field.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.