{"title":"聚乳酸-羟基乙酸-海藻酸盐纳米载体对肝癌细胞的高效药物递送","authors":"Mahsa Hoseinzadeh, Mohammad Javad Mokhtari, Farshid Kafilzadeh, Javad Mohammadnejad, Yaghoob Taheri","doi":"10.1049/nbt2.12143","DOIUrl":null,"url":null,"abstract":"<p>Efficient drug delivery systems (DDSs) can potentially replace with conventional modalities in cancer therapy, like liver cancer. In this study, a novel folic acid (FA)-functionalised and alginate (Alg)-modified poly lactic-co-glycolic acid (PLGA) nanocomposite was developed for delivery of doxorubicin (Dox) to HepG2 and Huh7 liver cancer cells. After synthesising the nanocarrier, several analytical devices, including FT-IR, DLS, TGA, and TEM, were employed for its characterisation. Nano-metric size (55 and 85 nm in diameter), close to neutral surface charge, semi-spherical morphology, and successful synthesis were approved. Dox entrapment efficiency was determined near 1%, and sustained and pH-sensitive drug release behaviours of nanocarrier were ascertained for DDS. Afterwards, the cell viability test was carried out to study the HepG2 and Huh7 cells suppression capability of FA-PLGA-Dox-Alg. About 12% and 10% cell viabilities were observed in HepG2 and Huh7 cancer cells after 24 h treatment with 400 nM concentration of FA-PLGA-Dox-Alg nanocarrier respectively. The IC<sub>50</sub> value was observed for 100 nM after 24 h of treatment in cancer cells. These data have indicated that fabricated nanocarrier could be promising DDS against liver cancer and replace with conventional approaches in cancer treatment, like chemotherapy.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 5","pages":"450-464"},"PeriodicalIF":3.8000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3e/f9/NBT2-17-450.PMC10374548.pdf","citationCount":"0","resultStr":"{\"title\":\"Poly lactic-co-glycolic acid-alginate nanocarrier for efficient drug delivery to liver cancer cells\",\"authors\":\"Mahsa Hoseinzadeh, Mohammad Javad Mokhtari, Farshid Kafilzadeh, Javad Mohammadnejad, Yaghoob Taheri\",\"doi\":\"10.1049/nbt2.12143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficient drug delivery systems (DDSs) can potentially replace with conventional modalities in cancer therapy, like liver cancer. In this study, a novel folic acid (FA)-functionalised and alginate (Alg)-modified poly lactic-co-glycolic acid (PLGA) nanocomposite was developed for delivery of doxorubicin (Dox) to HepG2 and Huh7 liver cancer cells. After synthesising the nanocarrier, several analytical devices, including FT-IR, DLS, TGA, and TEM, were employed for its characterisation. Nano-metric size (55 and 85 nm in diameter), close to neutral surface charge, semi-spherical morphology, and successful synthesis were approved. Dox entrapment efficiency was determined near 1%, and sustained and pH-sensitive drug release behaviours of nanocarrier were ascertained for DDS. Afterwards, the cell viability test was carried out to study the HepG2 and Huh7 cells suppression capability of FA-PLGA-Dox-Alg. About 12% and 10% cell viabilities were observed in HepG2 and Huh7 cancer cells after 24 h treatment with 400 nM concentration of FA-PLGA-Dox-Alg nanocarrier respectively. The IC<sub>50</sub> value was observed for 100 nM after 24 h of treatment in cancer cells. These data have indicated that fabricated nanocarrier could be promising DDS against liver cancer and replace with conventional approaches in cancer treatment, like chemotherapy.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":\"17 5\",\"pages\":\"450-464\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3e/f9/NBT2-17-450.PMC10374548.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12143\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12143","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Poly lactic-co-glycolic acid-alginate nanocarrier for efficient drug delivery to liver cancer cells
Efficient drug delivery systems (DDSs) can potentially replace with conventional modalities in cancer therapy, like liver cancer. In this study, a novel folic acid (FA)-functionalised and alginate (Alg)-modified poly lactic-co-glycolic acid (PLGA) nanocomposite was developed for delivery of doxorubicin (Dox) to HepG2 and Huh7 liver cancer cells. After synthesising the nanocarrier, several analytical devices, including FT-IR, DLS, TGA, and TEM, were employed for its characterisation. Nano-metric size (55 and 85 nm in diameter), close to neutral surface charge, semi-spherical morphology, and successful synthesis were approved. Dox entrapment efficiency was determined near 1%, and sustained and pH-sensitive drug release behaviours of nanocarrier were ascertained for DDS. Afterwards, the cell viability test was carried out to study the HepG2 and Huh7 cells suppression capability of FA-PLGA-Dox-Alg. About 12% and 10% cell viabilities were observed in HepG2 and Huh7 cancer cells after 24 h treatment with 400 nM concentration of FA-PLGA-Dox-Alg nanocarrier respectively. The IC50 value was observed for 100 nM after 24 h of treatment in cancer cells. These data have indicated that fabricated nanocarrier could be promising DDS against liver cancer and replace with conventional approaches in cancer treatment, like chemotherapy.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf