Adam M Navara, Yilan Xu, Marissa R Perez, Antonios G Mikos
{"title":"悬浮生物打印系统影响细胞存活率和支撑槽特性的各个方面","authors":"Adam M Navara, Yilan Xu, Marissa R Perez, Antonios G Mikos","doi":"10.1089/ten.TEA.2023.0097","DOIUrl":null,"url":null,"abstract":"<p><p>Suspended hydrogel printing is a growing method for fabricating bioprinted hydrogel constructs, largely due to how it enables nonviscous hydrogel inks to be used in extrusion printing. In this work, a previously developed poly(<i>N</i>-isopropylacrylamide)-based thermogelling suspended bioprinting system was examined in the context of chondrocyte-laden printing. Material factors such as ink concentration and cell concentration were found to have a significant effect on printed chondrocyte viability. In addition, the heated poloxamer support bath was able to maintain chondrocyte viability for up to 6 h of residence within the bath. The relationship between the ink and support bath was also assessed by measuring the rheological properties of the bath before and after printing. Bath storage modulus and yield stress decreased during printing as nozzle size was reduced, indicating the likelihood that dilution occurs over time through osmotic exchange with the ink. Altogether this work demonstrates the promise for printing high-resolution cell-encapsulating tissue engineering constructs, while also elucidating complex relationships between the ink and bath, which must be taken into consideration when designing suspended printing systems.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":"256-269"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspects of a Suspended Bioprinting System Affect Cell Viability and Support Bath Properties.\",\"authors\":\"Adam M Navara, Yilan Xu, Marissa R Perez, Antonios G Mikos\",\"doi\":\"10.1089/ten.TEA.2023.0097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Suspended hydrogel printing is a growing method for fabricating bioprinted hydrogel constructs, largely due to how it enables nonviscous hydrogel inks to be used in extrusion printing. In this work, a previously developed poly(<i>N</i>-isopropylacrylamide)-based thermogelling suspended bioprinting system was examined in the context of chondrocyte-laden printing. Material factors such as ink concentration and cell concentration were found to have a significant effect on printed chondrocyte viability. In addition, the heated poloxamer support bath was able to maintain chondrocyte viability for up to 6 h of residence within the bath. The relationship between the ink and support bath was also assessed by measuring the rheological properties of the bath before and after printing. Bath storage modulus and yield stress decreased during printing as nozzle size was reduced, indicating the likelihood that dilution occurs over time through osmotic exchange with the ink. Altogether this work demonstrates the promise for printing high-resolution cell-encapsulating tissue engineering constructs, while also elucidating complex relationships between the ink and bath, which must be taken into consideration when designing suspended printing systems.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":\" \",\"pages\":\"256-269\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEA.2023.0097\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2023.0097","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Aspects of a Suspended Bioprinting System Affect Cell Viability and Support Bath Properties.
Suspended hydrogel printing is a growing method for fabricating bioprinted hydrogel constructs, largely due to how it enables nonviscous hydrogel inks to be used in extrusion printing. In this work, a previously developed poly(N-isopropylacrylamide)-based thermogelling suspended bioprinting system was examined in the context of chondrocyte-laden printing. Material factors such as ink concentration and cell concentration were found to have a significant effect on printed chondrocyte viability. In addition, the heated poloxamer support bath was able to maintain chondrocyte viability for up to 6 h of residence within the bath. The relationship between the ink and support bath was also assessed by measuring the rheological properties of the bath before and after printing. Bath storage modulus and yield stress decreased during printing as nozzle size was reduced, indicating the likelihood that dilution occurs over time through osmotic exchange with the ink. Altogether this work demonstrates the promise for printing high-resolution cell-encapsulating tissue engineering constructs, while also elucidating complex relationships between the ink and bath, which must be taken into consideration when designing suspended printing systems.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.