{"title":"用于破坏细菌Hsp70伴侣蛋白的肽基分子。","authors":"Aweon Richards, Tania J. Lupoli","doi":"10.1016/j.cbpa.2023.102373","DOIUrl":null,"url":null,"abstract":"<div><p><span>DnaK is a chaperone that aids in nascent protein folding and the maintenance of </span>proteome<span><span> stability across bacteria. Due to the importance of DnaK in cellular proteostasis<span><span>, there have been efforts to generate molecules that modulate its function. In nature, both protein substrates and antimicrobial peptides interact with DnaK. However, many of these ligands interact with other cellular machinery as well. Recent work has sought to modify these peptide scaffolds to create DnaK-selective and species-specific probes. Others have reported </span>protein domain mimics of interaction partners to disrupt cellular DnaK function and high-throughput screening approaches to discover clinically-relevant </span></span>peptidomimetics that inhibit DnaK. The described work provides a foundation for the design of new assays and molecules to regulate DnaK activity.</span></p></div>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peptide-based molecules for the disruption of bacterial Hsp70 chaperones\",\"authors\":\"Aweon Richards, Tania J. Lupoli\",\"doi\":\"10.1016/j.cbpa.2023.102373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>DnaK is a chaperone that aids in nascent protein folding and the maintenance of </span>proteome<span><span> stability across bacteria. Due to the importance of DnaK in cellular proteostasis<span><span>, there have been efforts to generate molecules that modulate its function. In nature, both protein substrates and antimicrobial peptides interact with DnaK. However, many of these ligands interact with other cellular machinery as well. Recent work has sought to modify these peptide scaffolds to create DnaK-selective and species-specific probes. Others have reported </span>protein domain mimics of interaction partners to disrupt cellular DnaK function and high-throughput screening approaches to discover clinically-relevant </span></span>peptidomimetics that inhibit DnaK. The described work provides a foundation for the design of new assays and molecules to regulate DnaK activity.</span></p></div>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593123001114\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593123001114","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Peptide-based molecules for the disruption of bacterial Hsp70 chaperones
DnaK is a chaperone that aids in nascent protein folding and the maintenance of proteome stability across bacteria. Due to the importance of DnaK in cellular proteostasis, there have been efforts to generate molecules that modulate its function. In nature, both protein substrates and antimicrobial peptides interact with DnaK. However, many of these ligands interact with other cellular machinery as well. Recent work has sought to modify these peptide scaffolds to create DnaK-selective and species-specific probes. Others have reported protein domain mimics of interaction partners to disrupt cellular DnaK function and high-throughput screening approaches to discover clinically-relevant peptidomimetics that inhibit DnaK. The described work provides a foundation for the design of new assays and molecules to regulate DnaK activity.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.