{"title":"对微管与细胞质相互作用的模拟揭示了流体动力学在决定微管组织方面的重要性。","authors":"Mohammad Murshed, Donghui Wei, Ying Gu, Jin Wang","doi":"10.1002/pld3.505","DOIUrl":null,"url":null,"abstract":"<p><p>Although microtubules in plant cells have been extensively studied, the mechanisms that regulate the spatial organization of microtubules are poorly understood. We hypothesize that the interaction between microtubules and cytoplasmic flow plays an important role in the assembly and orientation of microtubules. To test this hypothesis, we developed a new computational modeling framework for microtubules based on theory and methods from the fluid-structure interaction. We employed the immersed boundary method to track the movement of microtubules in cytoplasmic flow. We also incorporated details of the encounter dynamics when two microtubules collide with each other. We verified our computational model through several numerical tests before applying it to the simulation of the microtubule-cytoplasm interaction in a growing plant cell. Our computational investigation demonstrated that microtubules are primarily oriented in the direction orthogonal to the axis of cell elongation. We validated the simulation results through a comparison with the measurement from laboratory experiments. We found that our computational model, with further calibration, was capable of generating microtubule orientation patterns that were qualitatively and quantitatively consistent with the experimental results. The computational model proposed in this study can be naturally extended to many other cellular systems that involve the interaction between microstructures and the intracellular fluid.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"7 7","pages":"e505"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/10/94/PLD3-7-e505.PMC10368657.pdf","citationCount":"0","resultStr":"{\"title\":\"Simulation of microtubule-cytoplasm interaction revealed the importance of fluid dynamics in determining the organization of microtubules.\",\"authors\":\"Mohammad Murshed, Donghui Wei, Ying Gu, Jin Wang\",\"doi\":\"10.1002/pld3.505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although microtubules in plant cells have been extensively studied, the mechanisms that regulate the spatial organization of microtubules are poorly understood. We hypothesize that the interaction between microtubules and cytoplasmic flow plays an important role in the assembly and orientation of microtubules. To test this hypothesis, we developed a new computational modeling framework for microtubules based on theory and methods from the fluid-structure interaction. We employed the immersed boundary method to track the movement of microtubules in cytoplasmic flow. We also incorporated details of the encounter dynamics when two microtubules collide with each other. We verified our computational model through several numerical tests before applying it to the simulation of the microtubule-cytoplasm interaction in a growing plant cell. Our computational investigation demonstrated that microtubules are primarily oriented in the direction orthogonal to the axis of cell elongation. We validated the simulation results through a comparison with the measurement from laboratory experiments. We found that our computational model, with further calibration, was capable of generating microtubule orientation patterns that were qualitatively and quantitatively consistent with the experimental results. The computational model proposed in this study can be naturally extended to many other cellular systems that involve the interaction between microstructures and the intracellular fluid.</p>\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":\"7 7\",\"pages\":\"e505\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/10/94/PLD3-7-e505.PMC10368657.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.505\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.505","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Simulation of microtubule-cytoplasm interaction revealed the importance of fluid dynamics in determining the organization of microtubules.
Although microtubules in plant cells have been extensively studied, the mechanisms that regulate the spatial organization of microtubules are poorly understood. We hypothesize that the interaction between microtubules and cytoplasmic flow plays an important role in the assembly and orientation of microtubules. To test this hypothesis, we developed a new computational modeling framework for microtubules based on theory and methods from the fluid-structure interaction. We employed the immersed boundary method to track the movement of microtubules in cytoplasmic flow. We also incorporated details of the encounter dynamics when two microtubules collide with each other. We verified our computational model through several numerical tests before applying it to the simulation of the microtubule-cytoplasm interaction in a growing plant cell. Our computational investigation demonstrated that microtubules are primarily oriented in the direction orthogonal to the axis of cell elongation. We validated the simulation results through a comparison with the measurement from laboratory experiments. We found that our computational model, with further calibration, was capable of generating microtubule orientation patterns that were qualitatively and quantitatively consistent with the experimental results. The computational model proposed in this study can be naturally extended to many other cellular systems that involve the interaction between microstructures and the intracellular fluid.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.