{"title":"帕西兰治疗转甲状腺素介导的淀粉样变性合并心肌病。","authors":"Adam Ioannou, Marianna Fontana, Julian D Gillmore","doi":"10.17925/HI.2023.17.1.27","DOIUrl":null,"url":null,"abstract":"<p><p>Transthyretin (TTR) is a tetrameric protein, synthesized primarily by the liver, that acts as a physiological transport protein for retinol and thyroxine. TTR can misfold into pathogenic amyloid fibrils that deposit in the heart and nerves, causing a life-threatening transthyretin amyloidosis cardiomyopathy (ATTR-CM), and a progressive and debilitating polyneuropathy (ATTR-PN). Recent therapeutic advances have resulted in the development of drugs that reduce TTR production. Patisiran is a small interfering RNA that disrupts the complimentary mRNA and inhibits TTR synthesis, and is the first gene-silencing medication licensed for the treatment of ATTR amyloidosis. After encouraging results following the use of patisiran for the treatment of patients with ATTR-PN, there has been increasing interest in the use of patisiran for the treatment of ATTR-CM. Various studies have demonstrated improvements across a wide range of cardiac biomarkers following treatment with patisiran, and have changed the perception of ATTR-CM from being thought of as a terminal disease process, to now being regarded as a treatable disease. These successes represent a huge milestone and have the potential to revolutionize the landscape of treatment for ATTR-CM. However, the long-term safety of patisiran and how best to monitor cardiac response to treatment remain to be determined.</p>","PeriodicalId":12836,"journal":{"name":"Heart International","volume":"17 1","pages":"27-35"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339464/pdf/touchcardio-17-1-27.pdf","citationCount":"0","resultStr":"{\"title\":\"Patisiran for the Treatment of Transthyretin-mediated Amyloidosis with Cardiomyopathy.\",\"authors\":\"Adam Ioannou, Marianna Fontana, Julian D Gillmore\",\"doi\":\"10.17925/HI.2023.17.1.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transthyretin (TTR) is a tetrameric protein, synthesized primarily by the liver, that acts as a physiological transport protein for retinol and thyroxine. TTR can misfold into pathogenic amyloid fibrils that deposit in the heart and nerves, causing a life-threatening transthyretin amyloidosis cardiomyopathy (ATTR-CM), and a progressive and debilitating polyneuropathy (ATTR-PN). Recent therapeutic advances have resulted in the development of drugs that reduce TTR production. Patisiran is a small interfering RNA that disrupts the complimentary mRNA and inhibits TTR synthesis, and is the first gene-silencing medication licensed for the treatment of ATTR amyloidosis. After encouraging results following the use of patisiran for the treatment of patients with ATTR-PN, there has been increasing interest in the use of patisiran for the treatment of ATTR-CM. Various studies have demonstrated improvements across a wide range of cardiac biomarkers following treatment with patisiran, and have changed the perception of ATTR-CM from being thought of as a terminal disease process, to now being regarded as a treatable disease. These successes represent a huge milestone and have the potential to revolutionize the landscape of treatment for ATTR-CM. However, the long-term safety of patisiran and how best to monitor cardiac response to treatment remain to be determined.</p>\",\"PeriodicalId\":12836,\"journal\":{\"name\":\"Heart International\",\"volume\":\"17 1\",\"pages\":\"27-35\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339464/pdf/touchcardio-17-1-27.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heart International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17925/HI.2023.17.1.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heart International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17925/HI.2023.17.1.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Patisiran for the Treatment of Transthyretin-mediated Amyloidosis with Cardiomyopathy.
Transthyretin (TTR) is a tetrameric protein, synthesized primarily by the liver, that acts as a physiological transport protein for retinol and thyroxine. TTR can misfold into pathogenic amyloid fibrils that deposit in the heart and nerves, causing a life-threatening transthyretin amyloidosis cardiomyopathy (ATTR-CM), and a progressive and debilitating polyneuropathy (ATTR-PN). Recent therapeutic advances have resulted in the development of drugs that reduce TTR production. Patisiran is a small interfering RNA that disrupts the complimentary mRNA and inhibits TTR synthesis, and is the first gene-silencing medication licensed for the treatment of ATTR amyloidosis. After encouraging results following the use of patisiran for the treatment of patients with ATTR-PN, there has been increasing interest in the use of patisiran for the treatment of ATTR-CM. Various studies have demonstrated improvements across a wide range of cardiac biomarkers following treatment with patisiran, and have changed the perception of ATTR-CM from being thought of as a terminal disease process, to now being regarded as a treatable disease. These successes represent a huge milestone and have the potential to revolutionize the landscape of treatment for ATTR-CM. However, the long-term safety of patisiran and how best to monitor cardiac response to treatment remain to be determined.