{"title":"抗炎治疗:传统概念和纳米技术的未来。","authors":"Manju Bernela, Priya Kaushal, Naveen Verma, Rajesh Thakur, Munish Ahuja, Pawan Kaur","doi":"10.2174/2772270817666221027154402","DOIUrl":null,"url":null,"abstract":"<p><p>Anti-inflammatory therapies currently in use mainly include steroidal and non-steroidal drugs. Contrary to their side effects, the steroid hormones glucocorticoids, which are synthetic versions of natural cortisol, are nevertheless often employed to treat a variety of inflammatory disorders. Other drug class of choice is non-steroidal drugs which mainly target COX-2 and hence the synthesis of prostaglandins, particularly PGE2. To cure both the short-term effects of chronic inflammatory disorders and the long-term symptoms of acute inflammation, pharmaceutical chemists are in continuous search for more potent and less toxic agents. Apart from these two drug classes, phytochemicals are gaining the attention of researchers as source of alternative antiinflammatory agents. However, every drug class has its own advantages or disadvantages thus requiring intervention of newer approaches. Currently, drugs used for anti-inflammatory therapies are costly with low efficacy, high health risk, and socio-economic impact due to the concern issue of their toxicity. Recently, nano-drug delivery system has been experiencing main interest as a new approach for targeting therapeutic agents to the target sites in a controlled, sustained manner and has various advantages as compared to the conventional drug delivery system like, increased solubility, bioavailability, improved pharmacokinetic profile of drugs, surface area and rate of dissolution and additionally, overcomes the problems related to hydrophobicity, toxicity. Present review summarized the intervention of nanotechnology to overcome the limitations/ risk associated with current anti-inflammatory drugs of different classes.</p>","PeriodicalId":29815,"journal":{"name":"Recent Advances in Inflammation & Allergy Drug Discovery","volume":"17 1","pages":"7-19"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Inflammatory Therapeutics: Conventional Concepts and Future with Nanotechnology.\",\"authors\":\"Manju Bernela, Priya Kaushal, Naveen Verma, Rajesh Thakur, Munish Ahuja, Pawan Kaur\",\"doi\":\"10.2174/2772270817666221027154402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anti-inflammatory therapies currently in use mainly include steroidal and non-steroidal drugs. Contrary to their side effects, the steroid hormones glucocorticoids, which are synthetic versions of natural cortisol, are nevertheless often employed to treat a variety of inflammatory disorders. Other drug class of choice is non-steroidal drugs which mainly target COX-2 and hence the synthesis of prostaglandins, particularly PGE2. To cure both the short-term effects of chronic inflammatory disorders and the long-term symptoms of acute inflammation, pharmaceutical chemists are in continuous search for more potent and less toxic agents. Apart from these two drug classes, phytochemicals are gaining the attention of researchers as source of alternative antiinflammatory agents. However, every drug class has its own advantages or disadvantages thus requiring intervention of newer approaches. Currently, drugs used for anti-inflammatory therapies are costly with low efficacy, high health risk, and socio-economic impact due to the concern issue of their toxicity. Recently, nano-drug delivery system has been experiencing main interest as a new approach for targeting therapeutic agents to the target sites in a controlled, sustained manner and has various advantages as compared to the conventional drug delivery system like, increased solubility, bioavailability, improved pharmacokinetic profile of drugs, surface area and rate of dissolution and additionally, overcomes the problems related to hydrophobicity, toxicity. Present review summarized the intervention of nanotechnology to overcome the limitations/ risk associated with current anti-inflammatory drugs of different classes.</p>\",\"PeriodicalId\":29815,\"journal\":{\"name\":\"Recent Advances in Inflammation & Allergy Drug Discovery\",\"volume\":\"17 1\",\"pages\":\"7-19\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Inflammation & Allergy Drug Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2772270817666221027154402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Inflammation & Allergy Drug Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2772270817666221027154402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Anti-Inflammatory Therapeutics: Conventional Concepts and Future with Nanotechnology.
Anti-inflammatory therapies currently in use mainly include steroidal and non-steroidal drugs. Contrary to their side effects, the steroid hormones glucocorticoids, which are synthetic versions of natural cortisol, are nevertheless often employed to treat a variety of inflammatory disorders. Other drug class of choice is non-steroidal drugs which mainly target COX-2 and hence the synthesis of prostaglandins, particularly PGE2. To cure both the short-term effects of chronic inflammatory disorders and the long-term symptoms of acute inflammation, pharmaceutical chemists are in continuous search for more potent and less toxic agents. Apart from these two drug classes, phytochemicals are gaining the attention of researchers as source of alternative antiinflammatory agents. However, every drug class has its own advantages or disadvantages thus requiring intervention of newer approaches. Currently, drugs used for anti-inflammatory therapies are costly with low efficacy, high health risk, and socio-economic impact due to the concern issue of their toxicity. Recently, nano-drug delivery system has been experiencing main interest as a new approach for targeting therapeutic agents to the target sites in a controlled, sustained manner and has various advantages as compared to the conventional drug delivery system like, increased solubility, bioavailability, improved pharmacokinetic profile of drugs, surface area and rate of dissolution and additionally, overcomes the problems related to hydrophobicity, toxicity. Present review summarized the intervention of nanotechnology to overcome the limitations/ risk associated with current anti-inflammatory drugs of different classes.