农业害虫nubilalis Ostrinia nubilalis信息素结合蛋白3的主侧链NMR定位和二级结构计算。

IF 0.8 4区 生物学 Q4 BIOPHYSICS
Omar Al-Danoon, Smita Mohanty
{"title":"农业害虫nubilalis Ostrinia nubilalis信息素结合蛋白3的主侧链NMR定位和二级结构计算。","authors":"Omar Al-Danoon,&nbsp;Smita Mohanty","doi":"10.1007/s12104-023-10145-3","DOIUrl":null,"url":null,"abstract":"<div><p><i>Ostrinia nubilalis</i>, also known as European Corn Borer (ECB), is a serious pest in Europe and North America, as well as in Central Asia and Northern Africa. It damages a variety of agricultural crops such as corn, oats, buckwheat, millet, and soybeans. causing annually at least one billion dollars in loss. The <i>Ostrinia nubilalis</i> pheromone-binding protein3 (OnubPBP3), preferentially expressed in the male moth antenna, has been implicated in the detection of the female-secreted pheromone blend during the mating process. Understanding the structure of and function of OnubPBP3, including the mechanism of pheromone binding and its release at the dendritic olfactory neuron (ORN), is essential if integrated pest management through sensory inhibition is to be achieved. We report here the backbone and side-chain resonance assignments of OnubPBP3 at pH 6.5 using various triple resonance NMR experiments on a <sup>13</sup>C, <sup>15</sup>N-labeled protein sample. The secondary structure of OnubPBP3 consists of six α-helices and an unstructured C-terminus based on backbone chemical shifts.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"223 - 227"},"PeriodicalIF":0.8000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backbone and side chain NMR assignments and secondary structure calculation of the pheromone binding protein3 of Ostrinia nubilalis, an agricultural pest\",\"authors\":\"Omar Al-Danoon,&nbsp;Smita Mohanty\",\"doi\":\"10.1007/s12104-023-10145-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>Ostrinia nubilalis</i>, also known as European Corn Borer (ECB), is a serious pest in Europe and North America, as well as in Central Asia and Northern Africa. It damages a variety of agricultural crops such as corn, oats, buckwheat, millet, and soybeans. causing annually at least one billion dollars in loss. The <i>Ostrinia nubilalis</i> pheromone-binding protein3 (OnubPBP3), preferentially expressed in the male moth antenna, has been implicated in the detection of the female-secreted pheromone blend during the mating process. Understanding the structure of and function of OnubPBP3, including the mechanism of pheromone binding and its release at the dendritic olfactory neuron (ORN), is essential if integrated pest management through sensory inhibition is to be achieved. We report here the backbone and side-chain resonance assignments of OnubPBP3 at pH 6.5 using various triple resonance NMR experiments on a <sup>13</sup>C, <sup>15</sup>N-labeled protein sample. The secondary structure of OnubPBP3 consists of six α-helices and an unstructured C-terminus based on backbone chemical shifts.</p></div>\",\"PeriodicalId\":492,\"journal\":{\"name\":\"Biomolecular NMR Assignments\",\"volume\":\"17 2\",\"pages\":\"223 - 227\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular NMR Assignments\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12104-023-10145-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-023-10145-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

裸粒玉米螟,也称为欧洲玉米螟(ECB),是欧洲、北美、中亚和北非的一种严重害虫。它破坏了玉米、燕麦、荞麦、小米和大豆等多种农作物。每年造成至少10亿美元的损失。Ostrinia nubilalis信息素结合蛋白3(OnubPBP3)优先在雄蛾触角中表达,与交配过程中雌蛾分泌的信息素混合物的检测有关。了解OnubPBP3的结构和功能,包括信息素结合及其在树突嗅觉神经元(ORN)释放的机制,对于通过感官抑制实现害虫综合治理至关重要。我们在这里报道了OnubPBP3在pH 6.5下的主链和侧链共振归属,使用对13C,15N标记的蛋白质样品的各种三重共振NMR实验。OnubPBP3的二级结构由六个α-螺旋和一个基于骨架化学位移的非结构化C末端组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Backbone and side chain NMR assignments and secondary structure calculation of the pheromone binding protein3 of Ostrinia nubilalis, an agricultural pest

Backbone and side chain NMR assignments and secondary structure calculation of the pheromone binding protein3 of Ostrinia nubilalis, an agricultural pest

Ostrinia nubilalis, also known as European Corn Borer (ECB), is a serious pest in Europe and North America, as well as in Central Asia and Northern Africa. It damages a variety of agricultural crops such as corn, oats, buckwheat, millet, and soybeans. causing annually at least one billion dollars in loss. The Ostrinia nubilalis pheromone-binding protein3 (OnubPBP3), preferentially expressed in the male moth antenna, has been implicated in the detection of the female-secreted pheromone blend during the mating process. Understanding the structure of and function of OnubPBP3, including the mechanism of pheromone binding and its release at the dendritic olfactory neuron (ORN), is essential if integrated pest management through sensory inhibition is to be achieved. We report here the backbone and side-chain resonance assignments of OnubPBP3 at pH 6.5 using various triple resonance NMR experiments on a 13C, 15N-labeled protein sample. The secondary structure of OnubPBP3 consists of six α-helices and an unstructured C-terminus based on backbone chemical shifts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信