{"title":"为什么g -四联体擅长阻止蛋白质聚集?","authors":"Theodore J Litberg, Rajesh Kumar Reddy Sannapureddi, Zijue Huang, Ahyun Son, Bharathwaj Sathyamoorthy, Scott Horowitz","doi":"10.1080/15476286.2023.2228572","DOIUrl":null,"url":null,"abstract":"<p><p>Maintaining a healthy protein folding environment is essential for cellular function. Recently, we found that nucleic acids, G-quadruplexes in particular, are potent chaperones for preventing protein aggregation. With the aid of structure-function and NMR analyses of two G-quadruplex forming sequences, PARP-I and LTR-III, we uncovered several contributing factors that affect G-quadruplexes in preventing protein aggregation. Notably, three factors emerged as vital in determining holdase activity of G-quadruplexes: their structural topology, G-quadruplex accessibility and dynamics, and oligomerization state. These factors together appear to largely dictate whether a G-quadruplex is able to prevent partially misfolded proteins from aggregating. Understanding the physical traits that govern the ability of G-quadruplexes to modulate protein aggregation will help elucidate their possible roles in neurodegenerative disease.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/59/64/KRNB_20_2228572.PMC10373610.pdf","citationCount":"0","resultStr":"{\"title\":\"Why are G-quadruplexes good at preventing protein aggregation?\",\"authors\":\"Theodore J Litberg, Rajesh Kumar Reddy Sannapureddi, Zijue Huang, Ahyun Son, Bharathwaj Sathyamoorthy, Scott Horowitz\",\"doi\":\"10.1080/15476286.2023.2228572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maintaining a healthy protein folding environment is essential for cellular function. Recently, we found that nucleic acids, G-quadruplexes in particular, are potent chaperones for preventing protein aggregation. With the aid of structure-function and NMR analyses of two G-quadruplex forming sequences, PARP-I and LTR-III, we uncovered several contributing factors that affect G-quadruplexes in preventing protein aggregation. Notably, three factors emerged as vital in determining holdase activity of G-quadruplexes: their structural topology, G-quadruplex accessibility and dynamics, and oligomerization state. These factors together appear to largely dictate whether a G-quadruplex is able to prevent partially misfolded proteins from aggregating. Understanding the physical traits that govern the ability of G-quadruplexes to modulate protein aggregation will help elucidate their possible roles in neurodegenerative disease.</p>\",\"PeriodicalId\":21351,\"journal\":{\"name\":\"RNA Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/59/64/KRNB_20_2228572.PMC10373610.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15476286.2023.2228572\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2023.2228572","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Why are G-quadruplexes good at preventing protein aggregation?
Maintaining a healthy protein folding environment is essential for cellular function. Recently, we found that nucleic acids, G-quadruplexes in particular, are potent chaperones for preventing protein aggregation. With the aid of structure-function and NMR analyses of two G-quadruplex forming sequences, PARP-I and LTR-III, we uncovered several contributing factors that affect G-quadruplexes in preventing protein aggregation. Notably, three factors emerged as vital in determining holdase activity of G-quadruplexes: their structural topology, G-quadruplex accessibility and dynamics, and oligomerization state. These factors together appear to largely dictate whether a G-quadruplex is able to prevent partially misfolded proteins from aggregating. Understanding the physical traits that govern the ability of G-quadruplexes to modulate protein aggregation will help elucidate their possible roles in neurodegenerative disease.
期刊介绍:
RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research.
RNA Biology brings together a multidisciplinary community of scientists working in the areas of:
Transcription and splicing
Post-transcriptional regulation of gene expression
Non-coding RNAs
RNA localization
Translation and catalysis by RNA
Structural biology
Bioinformatics
RNA in disease and therapy