Michael M Sutton, Michael P Duffy, Stefaan W Verbruggen, Christopher R Jacobs
{"title":"破骨细胞的生成需要初级纤毛的解体,可以通过药物促进初级纤毛的形成来抑制破骨细胞的生成。","authors":"Michael M Sutton, Michael P Duffy, Stefaan W Verbruggen, Christopher R Jacobs","doi":"10.1159/000531098","DOIUrl":null,"url":null,"abstract":"<p><p>The primary cilium is a solitary, sensory organelle with many roles in bone development, maintenance, and function. In the osteogenic cell lineage, including skeletal stem cells, osteoblasts, and osteocytes, the primary cilium plays a vital role in the regulation of bone formation, and this has made it a promising pharmaceutical target to maintain bone health. While the role of the primary cilium in the osteogenic cell lineage has been increasingly characterized, little is known about the potential impact of targeting the cilium in relation to osteoclasts, a hematopoietic cell responsible for bone resorption. The objective of this study was to determine whether osteoclasts have a primary cilium and to investigate whether or not the primary cilium of macrophages, osteoclast precursors, serves a functional role in osteoclast formation. Using immunocytochemistry, we showed the macrophages have a primary cilium, while osteoclasts lack this organelle. Furthermore, we increased macrophage primary cilia incidence and length using fenoldopam mesylate and found that cells undergoing such treatment showed a significant decrease in the expression of osteoclast markers tartrate-resistant acid phosphatase, cathepsin K, and c-Fos, as well as decreased osteoclast formation. This work is the first to show that macrophage primary cilia resorption may be a necessary step for osteoclast differentiation. Since primary cilia and preosteoclasts are responsive to fluid flow, we applied fluid flow at magnitudes present in the bone marrow to differentiating cells and found that osteoclastic gene expression by macrophages was not affected by fluid flow mechanical stimulation, suggesting that the role of the primary cilium in osteoclastogenesis is not a mechanosensory one. The primary cilium has been suggested to play a role in bone formation, and our findings indicate that it may also present a means to regulate bone resorption, presenting a dual benefit of developing ciliary-targeted pharmaceuticals for bone disease.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"235-244"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863750/pdf/","citationCount":"0","resultStr":"{\"title\":\"Osteoclastogenesis Requires Primary Cilia Disassembly and Can Be Inhibited by Promoting Primary Cilia Formation Pharmacologically.\",\"authors\":\"Michael M Sutton, Michael P Duffy, Stefaan W Verbruggen, Christopher R Jacobs\",\"doi\":\"10.1159/000531098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The primary cilium is a solitary, sensory organelle with many roles in bone development, maintenance, and function. In the osteogenic cell lineage, including skeletal stem cells, osteoblasts, and osteocytes, the primary cilium plays a vital role in the regulation of bone formation, and this has made it a promising pharmaceutical target to maintain bone health. While the role of the primary cilium in the osteogenic cell lineage has been increasingly characterized, little is known about the potential impact of targeting the cilium in relation to osteoclasts, a hematopoietic cell responsible for bone resorption. The objective of this study was to determine whether osteoclasts have a primary cilium and to investigate whether or not the primary cilium of macrophages, osteoclast precursors, serves a functional role in osteoclast formation. Using immunocytochemistry, we showed the macrophages have a primary cilium, while osteoclasts lack this organelle. Furthermore, we increased macrophage primary cilia incidence and length using fenoldopam mesylate and found that cells undergoing such treatment showed a significant decrease in the expression of osteoclast markers tartrate-resistant acid phosphatase, cathepsin K, and c-Fos, as well as decreased osteoclast formation. This work is the first to show that macrophage primary cilia resorption may be a necessary step for osteoclast differentiation. Since primary cilia and preosteoclasts are responsive to fluid flow, we applied fluid flow at magnitudes present in the bone marrow to differentiating cells and found that osteoclastic gene expression by macrophages was not affected by fluid flow mechanical stimulation, suggesting that the role of the primary cilium in osteoclastogenesis is not a mechanosensory one. The primary cilium has been suggested to play a role in bone formation, and our findings indicate that it may also present a means to regulate bone resorption, presenting a dual benefit of developing ciliary-targeted pharmaceuticals for bone disease.</p>\",\"PeriodicalId\":9717,\"journal\":{\"name\":\"Cells Tissues Organs\",\"volume\":\" \",\"pages\":\"235-244\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863750/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells Tissues Organs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000531098\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000531098","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
初级纤毛是一种独居的感觉细胞器,在骨骼发育、维护和功能方面发挥着多种作用。在成骨细胞系(包括骨骼干细胞、成骨细胞和骨细胞)中,初级纤毛在调节骨形成方面发挥着重要作用,这使其成为保持骨骼健康的一个有前景的药物靶点。尽管初级纤毛在成骨细胞系中的作用已被越来越多地描述出来,但人们对以纤毛为靶点对破骨细胞(一种负责骨吸收的造血细胞)的潜在影响却知之甚少。本研究的目的是确定破骨细胞是否具有初级纤毛,并研究破骨细胞前体--巨噬细胞的初级纤毛是否在破骨细胞形成过程中发挥功能性作用。通过免疫细胞化学,我们发现巨噬细胞具有初级纤毛,而破骨细胞缺乏这种细胞器。此外,我们使用甲磺酸非诺多泮增加了巨噬细胞初级纤毛的发生率和长度,并发现经过这种处理的细胞显示破骨细胞标志物抗酒石酸磷酸酶、酪蛋白酶 K 和 c-Fos 的表达显著减少,破骨细胞的形成也减少了。这项研究首次表明,巨噬细胞初级纤毛的吸收可能是破骨细胞分化的必要步骤。由于初级纤毛和前破骨细胞对液流有反应,我们对分化细胞施加了骨髓中存在的液流,结果发现巨噬细胞的破骨细胞基因表达不受液流机械刺激的影响,这表明初级纤毛在破骨细胞生成中的作用不是机械感觉作用。有人认为初级纤毛在骨形成中发挥作用,而我们的研究结果表明,初级纤毛也可能是调节骨吸收的一种手段,这为开发纤毛靶向药物治疗骨病带来了双重益处。
Osteoclastogenesis Requires Primary Cilia Disassembly and Can Be Inhibited by Promoting Primary Cilia Formation Pharmacologically.
The primary cilium is a solitary, sensory organelle with many roles in bone development, maintenance, and function. In the osteogenic cell lineage, including skeletal stem cells, osteoblasts, and osteocytes, the primary cilium plays a vital role in the regulation of bone formation, and this has made it a promising pharmaceutical target to maintain bone health. While the role of the primary cilium in the osteogenic cell lineage has been increasingly characterized, little is known about the potential impact of targeting the cilium in relation to osteoclasts, a hematopoietic cell responsible for bone resorption. The objective of this study was to determine whether osteoclasts have a primary cilium and to investigate whether or not the primary cilium of macrophages, osteoclast precursors, serves a functional role in osteoclast formation. Using immunocytochemistry, we showed the macrophages have a primary cilium, while osteoclasts lack this organelle. Furthermore, we increased macrophage primary cilia incidence and length using fenoldopam mesylate and found that cells undergoing such treatment showed a significant decrease in the expression of osteoclast markers tartrate-resistant acid phosphatase, cathepsin K, and c-Fos, as well as decreased osteoclast formation. This work is the first to show that macrophage primary cilia resorption may be a necessary step for osteoclast differentiation. Since primary cilia and preosteoclasts are responsive to fluid flow, we applied fluid flow at magnitudes present in the bone marrow to differentiating cells and found that osteoclastic gene expression by macrophages was not affected by fluid flow mechanical stimulation, suggesting that the role of the primary cilium in osteoclastogenesis is not a mechanosensory one. The primary cilium has been suggested to play a role in bone formation, and our findings indicate that it may also present a means to regulate bone resorption, presenting a dual benefit of developing ciliary-targeted pharmaceuticals for bone disease.
期刊介绍:
''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.