{"title":"利用具有成本效益的氧化锌纳米颗粒在阳光下辅助光催化降解橙色G染料。","authors":"M Sivagami, I V Asharani","doi":"10.1007/s43630-023-00462-w","DOIUrl":null,"url":null,"abstract":"<p><p>We have used an environmentally friendly approach to produce zinc oxide nanoparticles from an aqueous extract of Cucumis maderaspatanus L. leaves (Cm-ZnO NPs). Leaf extract phytoconstituents work as both reducing and stabilising agents. Calcination at 300, 500, 700, and 800 °C allowed fine-tuning of the bandgap of synthesised Cm-ZnO NPs, which has been well-characterized. The XRD analysis confirmed the crystalline nature of the Cm-ZnO NPs. The Cm-ZnO NPs were found to be spherical and averaged 8.6 nm in size, as determined by transmission electron microscopy and field emission scanning electron microscopy. TGA testing validated the nanoparticles' resilience to heat. The zeta potential measurements showed that the Cm-ZnO NPs were stable. By analysing the sorption of nitrogen onto the nanoparticles, we were able to calculate their surface area, which came in at 19 m<sup>2</sup>/g. The degradation of orange G (OG) dye in the presence of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) served as an oxidizing agent and measured the photocatalytic efficiency of the Cm-ZnO NPs. In addition, the effect of varying dye, H<sub>2</sub>O<sub>2</sub>, and catalyst concentrations on photodegradation was studied. The rate of reactions was computed. In conclusion, the obtained data demonstrated that the produced Cm-ZnO NPs can be employed as a cost-efficient catalyst for textile industrial effluent treatment.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"2445-2462"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sunlight-assisted photocatalytic degradation of orange G dye using cost-effective zinc oxide nanoparticles.\",\"authors\":\"M Sivagami, I V Asharani\",\"doi\":\"10.1007/s43630-023-00462-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have used an environmentally friendly approach to produce zinc oxide nanoparticles from an aqueous extract of Cucumis maderaspatanus L. leaves (Cm-ZnO NPs). Leaf extract phytoconstituents work as both reducing and stabilising agents. Calcination at 300, 500, 700, and 800 °C allowed fine-tuning of the bandgap of synthesised Cm-ZnO NPs, which has been well-characterized. The XRD analysis confirmed the crystalline nature of the Cm-ZnO NPs. The Cm-ZnO NPs were found to be spherical and averaged 8.6 nm in size, as determined by transmission electron microscopy and field emission scanning electron microscopy. TGA testing validated the nanoparticles' resilience to heat. The zeta potential measurements showed that the Cm-ZnO NPs were stable. By analysing the sorption of nitrogen onto the nanoparticles, we were able to calculate their surface area, which came in at 19 m<sup>2</sup>/g. The degradation of orange G (OG) dye in the presence of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) served as an oxidizing agent and measured the photocatalytic efficiency of the Cm-ZnO NPs. In addition, the effect of varying dye, H<sub>2</sub>O<sub>2</sub>, and catalyst concentrations on photodegradation was studied. The rate of reactions was computed. In conclusion, the obtained data demonstrated that the produced Cm-ZnO NPs can be employed as a cost-efficient catalyst for textile industrial effluent treatment.</p>\",\"PeriodicalId\":98,\"journal\":{\"name\":\"Photochemical & Photobiological Sciences\",\"volume\":\" \",\"pages\":\"2445-2462\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemical & Photobiological Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s43630-023-00462-w\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-023-00462-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Sunlight-assisted photocatalytic degradation of orange G dye using cost-effective zinc oxide nanoparticles.
We have used an environmentally friendly approach to produce zinc oxide nanoparticles from an aqueous extract of Cucumis maderaspatanus L. leaves (Cm-ZnO NPs). Leaf extract phytoconstituents work as both reducing and stabilising agents. Calcination at 300, 500, 700, and 800 °C allowed fine-tuning of the bandgap of synthesised Cm-ZnO NPs, which has been well-characterized. The XRD analysis confirmed the crystalline nature of the Cm-ZnO NPs. The Cm-ZnO NPs were found to be spherical and averaged 8.6 nm in size, as determined by transmission electron microscopy and field emission scanning electron microscopy. TGA testing validated the nanoparticles' resilience to heat. The zeta potential measurements showed that the Cm-ZnO NPs were stable. By analysing the sorption of nitrogen onto the nanoparticles, we were able to calculate their surface area, which came in at 19 m2/g. The degradation of orange G (OG) dye in the presence of hydrogen peroxide (H2O2) served as an oxidizing agent and measured the photocatalytic efficiency of the Cm-ZnO NPs. In addition, the effect of varying dye, H2O2, and catalyst concentrations on photodegradation was studied. The rate of reactions was computed. In conclusion, the obtained data demonstrated that the produced Cm-ZnO NPs can be employed as a cost-efficient catalyst for textile industrial effluent treatment.