Arcady A Putilov, Elena V Budkevich, Roman O Budkevich
{"title":"生物钟基因参与甲状腺组织恶性转化的证据综述。","authors":"Arcady A Putilov, Elena V Budkevich, Roman O Budkevich","doi":"10.3390/clockssleep5030029","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: In 2013, the results of a pioneer study on abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in cancerous thyroid nodules was published. In the following years, new findings suggesting the involvement of circadian clockwork dysfunction into malignant transformation of thyroid tissue were gradually accumulating. This systematic review provides an update on existing evidence regarding the association of these genes with thyroid tumorigenesis. (2) Methods: Two bibliographic databases (Scopus and PubMed) were searched for articles from inception to 20 March 2023. The reference lists of previously published (nonsystematic) reviews were also hand-searched for additional relevant studies. (3) Results: Nine studies published between 2013 and 2022 were selected. In total, 9 of 12 tested genes were found to be either up- or downregulated. The list of such genes includes all families of core circadian clock genes that are the key components of three transcriptional-translational feedback loops of the circadian clock mechanism (<i>BMAL1</i>, <i>CLOCK</i>, <i>NPAS2</i>, <i>RORα</i>, <i>REV-ERBα</i>, <i>PERs</i>, <i>CRYs</i>, and <i>DECs</i>). (4) Conclusions: Examination of abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in thyroid tissue can help to reduce the rate of inadequate differential preoperative diagnosis for thyroid carcinoma.</p>","PeriodicalId":33568,"journal":{"name":"Clocks & Sleep","volume":"5 3","pages":"384-398"},"PeriodicalIF":2.1000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366820/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Review of Evidence for the Involvement of the Circadian Clock Genes into Malignant Transformation of Thyroid Tissue.\",\"authors\":\"Arcady A Putilov, Elena V Budkevich, Roman O Budkevich\",\"doi\":\"10.3390/clockssleep5030029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>(1) Background: In 2013, the results of a pioneer study on abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in cancerous thyroid nodules was published. In the following years, new findings suggesting the involvement of circadian clockwork dysfunction into malignant transformation of thyroid tissue were gradually accumulating. This systematic review provides an update on existing evidence regarding the association of these genes with thyroid tumorigenesis. (2) Methods: Two bibliographic databases (Scopus and PubMed) were searched for articles from inception to 20 March 2023. The reference lists of previously published (nonsystematic) reviews were also hand-searched for additional relevant studies. (3) Results: Nine studies published between 2013 and 2022 were selected. In total, 9 of 12 tested genes were found to be either up- or downregulated. The list of such genes includes all families of core circadian clock genes that are the key components of three transcriptional-translational feedback loops of the circadian clock mechanism (<i>BMAL1</i>, <i>CLOCK</i>, <i>NPAS2</i>, <i>RORα</i>, <i>REV-ERBα</i>, <i>PERs</i>, <i>CRYs</i>, and <i>DECs</i>). (4) Conclusions: Examination of abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in thyroid tissue can help to reduce the rate of inadequate differential preoperative diagnosis for thyroid carcinoma.</p>\",\"PeriodicalId\":33568,\"journal\":{\"name\":\"Clocks & Sleep\",\"volume\":\"5 3\",\"pages\":\"384-398\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366820/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clocks & Sleep\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/clockssleep5030029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clocks & Sleep","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/clockssleep5030029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
A Review of Evidence for the Involvement of the Circadian Clock Genes into Malignant Transformation of Thyroid Tissue.
(1) Background: In 2013, the results of a pioneer study on abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in cancerous thyroid nodules was published. In the following years, new findings suggesting the involvement of circadian clockwork dysfunction into malignant transformation of thyroid tissue were gradually accumulating. This systematic review provides an update on existing evidence regarding the association of these genes with thyroid tumorigenesis. (2) Methods: Two bibliographic databases (Scopus and PubMed) were searched for articles from inception to 20 March 2023. The reference lists of previously published (nonsystematic) reviews were also hand-searched for additional relevant studies. (3) Results: Nine studies published between 2013 and 2022 were selected. In total, 9 of 12 tested genes were found to be either up- or downregulated. The list of such genes includes all families of core circadian clock genes that are the key components of three transcriptional-translational feedback loops of the circadian clock mechanism (BMAL1, CLOCK, NPAS2, RORα, REV-ERBα, PERs, CRYs, and DECs). (4) Conclusions: Examination of abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in thyroid tissue can help to reduce the rate of inadequate differential preoperative diagnosis for thyroid carcinoma.