用于细胞培养自动化应用的人类诱导多能干细胞菌落自动分割技术

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS
Kimerly A. Powell , Laura R. Bohrer , Nicholas E. Stone , Bradley Hittle , Kristin R. Anfinson , Viviane Luangphakdy , George Muschler , Robert F. Mullins , Edwin M. Stone , Budd A. Tucker
{"title":"用于细胞培养自动化应用的人类诱导多能干细胞菌落自动分割技术","authors":"Kimerly A. Powell ,&nbsp;Laura R. Bohrer ,&nbsp;Nicholas E. Stone ,&nbsp;Bradley Hittle ,&nbsp;Kristin R. Anfinson ,&nbsp;Viviane Luangphakdy ,&nbsp;George Muschler ,&nbsp;Robert F. Mullins ,&nbsp;Edwin M. Stone ,&nbsp;Budd A. Tucker","doi":"10.1016/j.slast.2023.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Human induced pluripotent stem cells (hiPSCs) have demonstrated great promise for a variety of applications that include cell therapy and regenerative medicine. Production of clinical grade hiPSCs requires reproducible manufacturing methods with stringent quality-controls such as those provided by image-controlled robotic processing systems. In this paper we present an automated image analysis method for identifying and picking hiPSC colonies for clonal expansion using the CellX<sup>TM</sup> robotic cell processing system. This method couples a light weight deep learning segmentation approach based on the U-Net architecture to automatically segment the hiPSC colonies in full field of view (FOV) high resolution phase contrast images with a standardized approach for suggesting pick locations. The utility of this method is demonstrated using images and data obtained from the CellX<sup>TM</sup> system where clinical grade hiPSCs were reprogrammed, clonally expanded, and differentiated into retinal organoids for use in treatment of patients with inherited retinal degenerative blindness.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S247263032300047X/pdfft?md5=7412737fe940344581f5872c72620791&pid=1-s2.0-S247263032300047X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automated human induced pluripotent stem cell colony segmentation for use in cell culture automation applications\",\"authors\":\"Kimerly A. Powell ,&nbsp;Laura R. Bohrer ,&nbsp;Nicholas E. Stone ,&nbsp;Bradley Hittle ,&nbsp;Kristin R. Anfinson ,&nbsp;Viviane Luangphakdy ,&nbsp;George Muschler ,&nbsp;Robert F. Mullins ,&nbsp;Edwin M. Stone ,&nbsp;Budd A. Tucker\",\"doi\":\"10.1016/j.slast.2023.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human induced pluripotent stem cells (hiPSCs) have demonstrated great promise for a variety of applications that include cell therapy and regenerative medicine. Production of clinical grade hiPSCs requires reproducible manufacturing methods with stringent quality-controls such as those provided by image-controlled robotic processing systems. In this paper we present an automated image analysis method for identifying and picking hiPSC colonies for clonal expansion using the CellX<sup>TM</sup> robotic cell processing system. This method couples a light weight deep learning segmentation approach based on the U-Net architecture to automatically segment the hiPSC colonies in full field of view (FOV) high resolution phase contrast images with a standardized approach for suggesting pick locations. The utility of this method is demonstrated using images and data obtained from the CellX<sup>TM</sup> system where clinical grade hiPSCs were reprogrammed, clonally expanded, and differentiated into retinal organoids for use in treatment of patients with inherited retinal degenerative blindness.</p></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S247263032300047X/pdfft?md5=7412737fe940344581f5872c72620791&pid=1-s2.0-S247263032300047X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S247263032300047X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S247263032300047X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

人类诱导多能干细胞(hiPSCs)在包括细胞治疗和再生医学在内的各种应用中显示出巨大的前景。临床级hiPSCs的生产需要具有严格质量控制的可重复制造方法,例如由图像控制的机器人处理系统提供的方法。在本文中,我们提出了一种使用CellXTM机器人细胞处理系统识别和挑选hiPSC菌落进行克隆扩增的自动图像分析方法。该方法结合基于U-Net架构的轻量级深度学习分割方法,在全视场(FOV)高分辨率相对比图像中自动分割hiPSC菌落,并采用标准化的选择位置建议方法。使用CellXTM系统获得的图像和数据证明了该方法的实用性,在CellXTM系统中,临床级hiPSCs被重新编程,克隆扩增并分化为视网膜类器官,用于治疗遗传性视网膜退行性失明患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated human induced pluripotent stem cell colony segmentation for use in cell culture automation applications

Human induced pluripotent stem cells (hiPSCs) have demonstrated great promise for a variety of applications that include cell therapy and regenerative medicine. Production of clinical grade hiPSCs requires reproducible manufacturing methods with stringent quality-controls such as those provided by image-controlled robotic processing systems. In this paper we present an automated image analysis method for identifying and picking hiPSC colonies for clonal expansion using the CellXTM robotic cell processing system. This method couples a light weight deep learning segmentation approach based on the U-Net architecture to automatically segment the hiPSC colonies in full field of view (FOV) high resolution phase contrast images with a standardized approach for suggesting pick locations. The utility of this method is demonstrated using images and data obtained from the CellXTM system where clinical grade hiPSCs were reprogrammed, clonally expanded, and differentiated into retinal organoids for use in treatment of patients with inherited retinal degenerative blindness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信