Kyo Won Lee, Sean S W Park, Dong Suk Kim, Kimyung Choi, Joohyun Shim, Jihun Kim, Sung Joo Kim, Jae Berm Park
{"title":"在转基因猪到非人类灵长类动物模型中的辅助性异种肝移植技术:一种延长生存期的手术方法。","authors":"Kyo Won Lee, Sean S W Park, Dong Suk Kim, Kimyung Choi, Joohyun Shim, Jihun Kim, Sung Joo Kim, Jae Berm Park","doi":"10.1111/xen.12814","DOIUrl":null,"url":null,"abstract":"<p><p>Xenotransplantation using pigs' liver offers a potentially alternative method to overcome worldwide donor shortage, or more importantly as a bridge to allotransplantation. However, it has been challenged by profound thrombocytopenia and fatal coagulopathy in non-human primate models. Here we suggest that a left auxiliary technique can be a useful method to achieve extended survival of the xenograft. Fifteen consecutive liver xenotransplants were carried out in a pig-to-cynomolgus model. Right auxiliary technique was implemented in two cases, orthotopic in eight cases, and left auxiliary in five cases. None of the right auxiliary recipients survived after surgery due to hemorrhage during complex dissection between the primate's right lobe and inferior vena cava. Orthotopic recipients survived less than 7 days secondary to profound thrombocytopenia and coagulopathy. Two out of five left auxiliary xenotransplants survived more than 3 weeks without uncontrolled thrombocytopenia or anemia, with one of them surviving 34 days, the longest graft survival reported to date. Left auxiliary xenotransplant is a feasible approach in non-human primate experiments, and the feared risk of thrombocytopenia and coagulopathy can be minimized. This may allow for longer evaluation of the xenograft and help better understand histopathological and immunological changes that occur following liver xenotransplantation.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auxiliary liver xenotransplantation technique in a transgenic pig-to-non-human primate model: A surgical approach to prolong survival.\",\"authors\":\"Kyo Won Lee, Sean S W Park, Dong Suk Kim, Kimyung Choi, Joohyun Shim, Jihun Kim, Sung Joo Kim, Jae Berm Park\",\"doi\":\"10.1111/xen.12814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Xenotransplantation using pigs' liver offers a potentially alternative method to overcome worldwide donor shortage, or more importantly as a bridge to allotransplantation. However, it has been challenged by profound thrombocytopenia and fatal coagulopathy in non-human primate models. Here we suggest that a left auxiliary technique can be a useful method to achieve extended survival of the xenograft. Fifteen consecutive liver xenotransplants were carried out in a pig-to-cynomolgus model. Right auxiliary technique was implemented in two cases, orthotopic in eight cases, and left auxiliary in five cases. None of the right auxiliary recipients survived after surgery due to hemorrhage during complex dissection between the primate's right lobe and inferior vena cava. Orthotopic recipients survived less than 7 days secondary to profound thrombocytopenia and coagulopathy. Two out of five left auxiliary xenotransplants survived more than 3 weeks without uncontrolled thrombocytopenia or anemia, with one of them surviving 34 days, the longest graft survival reported to date. Left auxiliary xenotransplant is a feasible approach in non-human primate experiments, and the feared risk of thrombocytopenia and coagulopathy can be minimized. This may allow for longer evaluation of the xenograft and help better understand histopathological and immunological changes that occur following liver xenotransplantation.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/xen.12814\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/xen.12814","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Auxiliary liver xenotransplantation technique in a transgenic pig-to-non-human primate model: A surgical approach to prolong survival.
Xenotransplantation using pigs' liver offers a potentially alternative method to overcome worldwide donor shortage, or more importantly as a bridge to allotransplantation. However, it has been challenged by profound thrombocytopenia and fatal coagulopathy in non-human primate models. Here we suggest that a left auxiliary technique can be a useful method to achieve extended survival of the xenograft. Fifteen consecutive liver xenotransplants were carried out in a pig-to-cynomolgus model. Right auxiliary technique was implemented in two cases, orthotopic in eight cases, and left auxiliary in five cases. None of the right auxiliary recipients survived after surgery due to hemorrhage during complex dissection between the primate's right lobe and inferior vena cava. Orthotopic recipients survived less than 7 days secondary to profound thrombocytopenia and coagulopathy. Two out of five left auxiliary xenotransplants survived more than 3 weeks without uncontrolled thrombocytopenia or anemia, with one of them surviving 34 days, the longest graft survival reported to date. Left auxiliary xenotransplant is a feasible approach in non-human primate experiments, and the feared risk of thrombocytopenia and coagulopathy can be minimized. This may allow for longer evaluation of the xenograft and help better understand histopathological and immunological changes that occur following liver xenotransplantation.