Mayu Ohata, Yoshinobu Takada, Yui Sato, Takumi Okamoto, Kohji Murase, Seiji Takayama, Go Suzuki, Masao Watanabe
{"title":"油菜S29单倍型自交不需要MLPK功能。","authors":"Mayu Ohata, Yoshinobu Takada, Yui Sato, Takumi Okamoto, Kohji Murase, Seiji Takayama, Go Suzuki, Masao Watanabe","doi":"10.1007/s00497-023-00463-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>S<sup>29</sup> haplotype does not require the MLPK function for self-incompatibility in Brassica rapa. Self-incompatibility (SI) in Brassicaceae is regulated by the self-recognition mechanism, which is based on the S-haplotype-specific direct interaction of the pollen-derived ligand, SP11/SCR, and the stigma-side receptor, SRK. M locus protein kinase (MLPK) is known to be one of the positive effectors of the SI response. MLPK directly interacts with SRK, and is phosphorylated by SRK in Brassica rapa. In Brassicaceae, MLPK was demonstrated to be essential for SI in B. rapa and Brassica napus, whereas it is not essential for SI in Arabidopsis thaliana (with introduced SRK and SP11/SCR from related SI species). Little is known about what determines the need for MLPK in SI of Brassicaceae. In this study, we investigated the relationship between S-haplotype diversity and MLPK function by analyzing the SI phenotypes of different S haplotypes in a mlpk/mlpk mutant background. The results have clarified that in B. rapa, all the S haplotypes except the S<sup>29</sup> we tested need the MLPK function, but the S<sup>29</sup> haplotype does not require MLPK for the SI. Comparative analysis of MLPK-dependent and MLPK-independent S haplotype might provide new insight into the evolution of S-haplotype diversity and the molecular mechanism of SI in Brassicaceae.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"36 3","pages":"255-262"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363064/pdf/","citationCount":"1","resultStr":"{\"title\":\"MLPK function is not required for self-incompatibility in the S<sup>29</sup> haplotype of Brassica rapa L.\",\"authors\":\"Mayu Ohata, Yoshinobu Takada, Yui Sato, Takumi Okamoto, Kohji Murase, Seiji Takayama, Go Suzuki, Masao Watanabe\",\"doi\":\"10.1007/s00497-023-00463-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>S<sup>29</sup> haplotype does not require the MLPK function for self-incompatibility in Brassica rapa. Self-incompatibility (SI) in Brassicaceae is regulated by the self-recognition mechanism, which is based on the S-haplotype-specific direct interaction of the pollen-derived ligand, SP11/SCR, and the stigma-side receptor, SRK. M locus protein kinase (MLPK) is known to be one of the positive effectors of the SI response. MLPK directly interacts with SRK, and is phosphorylated by SRK in Brassica rapa. In Brassicaceae, MLPK was demonstrated to be essential for SI in B. rapa and Brassica napus, whereas it is not essential for SI in Arabidopsis thaliana (with introduced SRK and SP11/SCR from related SI species). Little is known about what determines the need for MLPK in SI of Brassicaceae. In this study, we investigated the relationship between S-haplotype diversity and MLPK function by analyzing the SI phenotypes of different S haplotypes in a mlpk/mlpk mutant background. The results have clarified that in B. rapa, all the S haplotypes except the S<sup>29</sup> we tested need the MLPK function, but the S<sup>29</sup> haplotype does not require MLPK for the SI. Comparative analysis of MLPK-dependent and MLPK-independent S haplotype might provide new insight into the evolution of S-haplotype diversity and the molecular mechanism of SI in Brassicaceae.</p>\",\"PeriodicalId\":51297,\"journal\":{\"name\":\"Plant Reproduction\",\"volume\":\"36 3\",\"pages\":\"255-262\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363064/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00497-023-00463-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00497-023-00463-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
MLPK function is not required for self-incompatibility in the S29 haplotype of Brassica rapa L.
Key message: S29 haplotype does not require the MLPK function for self-incompatibility in Brassica rapa. Self-incompatibility (SI) in Brassicaceae is regulated by the self-recognition mechanism, which is based on the S-haplotype-specific direct interaction of the pollen-derived ligand, SP11/SCR, and the stigma-side receptor, SRK. M locus protein kinase (MLPK) is known to be one of the positive effectors of the SI response. MLPK directly interacts with SRK, and is phosphorylated by SRK in Brassica rapa. In Brassicaceae, MLPK was demonstrated to be essential for SI in B. rapa and Brassica napus, whereas it is not essential for SI in Arabidopsis thaliana (with introduced SRK and SP11/SCR from related SI species). Little is known about what determines the need for MLPK in SI of Brassicaceae. In this study, we investigated the relationship between S-haplotype diversity and MLPK function by analyzing the SI phenotypes of different S haplotypes in a mlpk/mlpk mutant background. The results have clarified that in B. rapa, all the S haplotypes except the S29 we tested need the MLPK function, but the S29 haplotype does not require MLPK for the SI. Comparative analysis of MLPK-dependent and MLPK-independent S haplotype might provide new insight into the evolution of S-haplotype diversity and the molecular mechanism of SI in Brassicaceae.
期刊介绍:
Plant Reproduction (formerly known as Sexual Plant Reproduction) is a journal devoted to publishing high-quality research in the field of reproductive processes in plants. Article formats include original research papers, expert reviews, methods reports and opinion papers. Articles are selected based on significance for the field of plant reproduction, spanning from the induction of flowering to fruit development. Topics incl … show all